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Summary

A studyhasbeenperformedfocusingon the calculationof sensitivitiesof displacements,
velocities,accelerations,andstressesin linear,structural,transientresponseproblems.One
significantgoalof the studywasto developandevaluatesensitivitycalculationtechniques
suitablefor large-orderfinite elementanalyses.Accordingly,approximationvectorssuchas
vibrationmodeshapesareusedto reducethedimensionalityof thefiniteelementmodel.Much
of the researchfocusedon theconvergenceof both responsequantitiesandsensitivitiesasa
functionof thenumberof vectorsused.

Twotypesofsensitivitycalculationtechniquesweredevelopedandevaluated.Thefirst type
of techniqueis anoverallfinitedifferencemethodwheretheanalysisisrepeatedforperturbed
designs.The secondtype of techniqueis termedsemianalyticalbecauseit involvesdirect
analyticaldifferentiationof theequationsof motionwith finitedifferenceapproximationofthe
coefficientmatrices.Tobecomputationallypracticalin large-orderproblems,theoverallfinite
differencemethodsmustusetheapproximationvectorsfromtheoriginaldesignin theanalyses
of theperturbedmodels.Thiswasfoundto resultin poorconvergenceof stresssensitivities
in severalcases.To overcomethis poor convergence,two semianalyticaltechniqueswere
developed.Thefirst techniqueaccountsfor thechangein eigenvectorsthroughapproximate
eigenvectorderivatives.Thesecondtechniqueappliesthemodeaccelerationmethodoftransient
analysisto the sensitivitycalculations.Both result in verygoodconvergenceof the stress
sensitivities.In both techniquesthecomputationalcostis muchlessthanwouldresultif the
vibrationmodeswererecalculatedandthenusedin anoverallfinitedifferencemethod.





Chapter 1

Introduction

1.1. Overview

In thepast10yearstherehasbeenincreasingin-
terestin calculatingthederivativesof structuralbe-
haviorwith respectto problemparametersordesign
variables(i.e.,sensitivities).Oneofthemainusesof
thesesensitivitiesis in automateddesignprocedures
wherea numericalalgorithmis usedto improvea
structureby modifyingthedesignparameterswhile
satisfyingprescribedconstraintsonthestructuralbe-
havior. Most of the numericalalgorithmsusedin
theseproceduresrequireboth an initial designand
a setof sensitivitiesin orderto decidehowto im-
provethe structure. Manyreferencesaddressthis
sensitivitycalculationquestionwithin thecontextof
automatedstructuraldesign,whereasothers,suchas
this study,focusspecificallyon issuesrelatedto the
calculationofsensitivities.Otherusesofsensitivities
instructuresproblemsincludethesystemidentifica-
tion problemin structuraldynamicsandstatistical
structuralanalysis.References1 and 2 provide a

comprehensive review of work on calculating sensi-

tivities in structural systems.

It is clear from many references (e.g., ref. 1)
that most of the emphasis in structural optimiza-

tion and the associated sensitivity calculation meth-

ods has been on static problems. This is not sur-

prising since most structural analyses themselves are

static. The objective of the static analysis and sen-

sitivity calculation problem, for linear systems, is to

calculate the responses (e.g., displacements, stresses)

and their derivatives with respect to structural pa-

rameters (e.g., member areas, thicknesses), which
are assumed to be constant for all time. Tech-

niques for both the analysis and sensitivity calcula-

tions have reached considerable maturity in the past

l0 to 20 years.

In many problems, however, the loading on the

structure varies with time, which causes the response

of the structure also to vary as a function of time.

Examples of such problems are a gust on an aircraft

wing, an unbalanced engine in an automobile, or a

building during an earthquake. In these cases, it is

PRECEDING PAGE BLANK NOT FILMED

important to predict stresses accurately as well as

displacements (and possibly velocities and accelera-

tions) as a function of time. Often it is sufficient to

predict the maximum and minimum values of these
response quantities. Similarly, the goal of the sen-

sitivity analysis is the calculation of derivatives of

these response quantities with respect to the struc-

tural parameters as a function of time or at the time

points where the maximum or minimum responses
occur.

The introduction of the time parameter compli-

cates the analysis in several ways. First, it changes

the system of equations from a set of coupled alge-
braic equations to a set of coupled differential equa-

tions whose accurate solution may be difficult and

Computationally costly. Second, the amount of in-
formation that must be considered and evaluated to

understand the response of the structure is increased

by orders of magnitude.

Most practical static and dynamic analyses are

currently performed with the finite clement method.
Since this technique replaces a continuum (infinite di-

mensional space) with a finite-degree-of-freedom ap-
proximation, the question of required mesh refine-

ment is a natural one. This is not an easy question to

answer because the convergence of the approximation

as the mesh is refined depends on the quantity being

considered. Usually, the fundamental unknowns are

the displacements and rotations at the finite element

nodes. In theses cases, the convergence of derivatives

of displacements with respect to a spatial parameter

(stresses), with respect to time (velocities, acceler-

ations), or with respect to a structural parameter

(sensitivities) will be worse than the convergence of

the displacements themselves.
After the structure has been discretized with the

finite element method, yet another approximation

is usually introduced in linear dynamics problems.

The behavior of the structure is represented by a

reduced set of basis functions (frequently natural
vibration modes) in order to simplify the solution of

the transient response problem. This approximation

introduces another set of concerns over accuracy of

the response quantities and their sensitivities.

Other errors in transient analysis or sensitivity
calculations, which rarely occur in static analyses,
are due to the truncation error of finite difference

operators. This problem occurs with the use of nu-

merical integration techniques in solving the coupled

differential equations in the transient problem. This

problem also occurs when difference approximations
are used in the calculation of sensitivities. Round-off

errors, due to the finite precision arithmetic on digi-

tal computers, are also more of a concern in transient

or sensitivity analyses than in simple static analyses.
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All thesecomplexitiesin transientanalysiscou-
pledwith the problemsof sensitivityanalysishave
slowedthe progressin the developmentof sensi-
tivity calculationtechniquesfor transientresponse
problems.However, substantial progress has been

made. Some of the important previous work in

optimization of structures under transient loads and

calculation of sensitivities in transient response prob-
lems is discussed in section 1.2.

1.2. Review of Previous Pertinent Work

Reference 3 is one of the earliest papers dealing

with optimization of structures under transient loads.

In this paper, Fox and Kapoor consider the minimum

mass design of frame structures under an applied

base motion subject to constraints on deflections and

stresses. The equations of motion are uncoupled by

using vibration modes and solved for the maximum

value of the modal response by using a shock spec-

trum approach. A considerable simplification is in-
troduced by directly summing the maximum modal

responses; therefore, time is removed as a parameter
in the calculations.

In references 4 and 5, Cassis and Schmit present

procedures for the automated design of plane frames

under general transient loading. The dynamic analy-

sis is performed with modal superposition, and only

modal damping is allowed. Integral forms of the
time-dependent constraints are used. Sensitivities

are calculated with an explicit differentiation of the

dynamic equations along with exact calculation of

the required eigenvalue and eigenvector derivatives.
Effects of finite element discretization and modal

truncation on the sensitivities or final optimized de-

signs were not considered.

In the past 10 years, other researchers have con-

sidered the application of general sensitivity theory

to the problem of dynamic mechanical systems. Ref-
erence 1 summarizes this work and describes three

basic approaches which have been employed• In the
first method, called the direct method, the equations

of motion are directly differentiated and solved. A

second method offers the advantage of reduced conl-

putational cost when there are more design vari-

ables than constraints on response quantities. In

this method, called the adjoint method, the sensi-

tivity equations are rewritten in terms of a newly

defined adjoint vector. After solving this new sys-

tem for the adjoint vector, the calculation of the sen-

sitivities of the response constraints with respect to
each of the design variables is straightforward. In the

third method, called the Green's function method,
the derivatives are obtained in terms of the Green's

function of the equations of motion. Although the

4

results from all three methods are theoretically iden-

tical, their relative computational efficiency depends

on the relative numbers of design variables, degrees
of freedom, and constraints.

Haug, Arora, and their coworkers have made con-

siderable progress in addressing many of the prob-

lems in the optimal design of mechanical systems un-
der dynamic loadings. Much of their early work was

spent studying a "state space" or adjoint variable
approach to calculating sensitivities. References 6

through 9 should be noted. These references con-

sider application to both elastic structural design and

machine design problems that often have the addi-

tional complexity of nonlinear equations of motion.

However, most of these examples have involved few

degrees of freedom or design variables. A more re-

cent paper by Haug (ref. 10) extended the sensitivity

analyses of previous papers to include additional al-

gebraic constraint equations that are often present in

machine design problems. Also, sensitivity equations
for second derivatives are presented.

The adjoint method is particularly attractive

when a transient constraint is integrated over time
to produce a single constraint because the total num-

ber of constraints is often small. However, the loss

of information in this integral formulation and its

disadvantages are noted in reference 11. Given the

danger of having only a single "worst-case" value of

the constraint function in time, reference 11 proposed

including all local maximum points of the constraint

function in the constraint set. A significant disadvan-

tage of this approach is that for "jagged" response
functions, there can be a large number of redundant

local maxima. This important problem of constraint

definition was also considered in reference 8, where

several methods for obtaining a few important con-

straints at discrete points in time were proposed.

Both direct and adjoint sensitivity methods for

a nonlinear hysteretic structure are presented in ref-
erence 12. Because of the nonlinearities, numerical

integration of the full coupled system is required.

A recent approach in sensitivity analysis has been

to write sensitivity expressions for the solid contin-

uum prior to discretizing the system. This approach
is especially attractive when shape-type design vari-

ables are being considered because the design vari-

able itself often represents a continuous region on

the surface of the body. Reference 13 uses the con-

cept of the material derivative to calculate shape

derivatives of a continuum under dynamic loads. In

reference 14, expressions for shape sensitivities of

a continuum considering material nonlinearities and

dynamic effects are written with a variational

approach.



1.3. Objectives and Scope

The purpose of the study reported herein is to in-

vestigate methods for calculating sensitivities in lin-

ear transient structural response problems. Very gen-
eral forms of external loading on the structure and

damping are permitted. In any numerical algorithm,

both accuracy and computational efficiency are con-
cerns. Errors in the sensitivities due to factors such

as the finite element mesh, truncation of the basis

vector set in the transient analysis, and finite differ-

ence approximations in the sensitivity and numerical

integration procedures are considered. An objective

of the study is to identify approaches to sensitivity

analysis that are appropriate for large-scale struc-

tural analysis. This is emphasized in the selection of

the algorithms and in a study of the relative compu-

tational efficiency of several competing methods.

Three transient response problems are considered

in detail: a five-span, simply supported beam; a com-

posite aircraft wing; and a cantilever beam with a

cross section that varies along its length. None of
these three problems are large. However, each prob-

lem includes ingredients which make the sensitivity

analysis computationally difficult.
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Chapter 2

Equations of Motion and Solution

2.1. Governing Equations

Ncwmarkmethod(forexample,ref.15)isanexample
of suchan integrationtechnique.In explicit integra-
tion techniques,the timestepmustbea fractionof
theperiodassociatedwith "b_gin orderfor thesolu-
tion processto be numericallystable. Usingeither
technique,the computationalwork is largebecause
equations(2.1)arcof large order.

An alternative to directly solving equations (2.1)

is to solve an approximate reduced-order problem

instead. This is the preferred approach for most

linear structural dynamics problems. The details

of the techniques used to reduce the order of the

dynamic system are discussed in section 2.2.

The equations of motion for a damped, linear

structural system can be written as

Mii + Cfi + Ku = p(t) (2.1)

which is a set of ng coupled differential equations
and M, C, and K arc the system mass, damping,

and stiffness matrices, respectively. Frequently it

is possible to separate thc loading vector p into a
product of a vector describing the spatial distribution

of the loading f and a scalar fimction of time g(t) ms

p(t) = g(t)f (2.2)

Often equations (2.1) are the result of a large
finite element model and are therefore of large order.

One way to characterize the behavior of this system
is by examining the eigenvalues of the undamped

system

Kdpj - _zYMd, j = O, (j = 1,...,rig) (2.3)

For most large structural systems, equations (2.1) are
"stiff" the condition number 2 2; wrz_/co 1 is many orders

of magnitude.
The external loading also has a major effect on

the dynamic response of the system, hnpulsive loads

where g(t) changes rapidly relative to the periods as-

sociated with the smallest aJj tend to produce a re-
sponse history with significant high-frequency com-

ponents. Loads that are applied slowly relative to the

vibration periods of the cOj produce a predominantly

low-frequency response history.
Two basic approaches are available for the solu-

tion of equations (2.1). The first approach is to nu-
merically integrate the equations in a step-by-step

manner. In implicit integration techniques, the time

step must be a fraction of the period associated with

the largest cOj significantly excited by the loading in
order to obtain an accurate solution. The well-known

2.2. Reduction Techniques

The first step in applying a reduction technique

to the solution of equations (2.1) is to approxinmte

the solution by nr basis functions

u = _q (2.4)

where nr is usually much less than n q. Then a

reduced set of equations can be written

where

M_I + Cit + Kq = g(t)-¢ (2.5)

= @T M(I) (2.6)

= _Tc_ (2.7)

= OTK(I) (2.8)

= (I)Tf (2.9)

If the number of vectors in • is equal to the size of the

original system ng and the vectors in q_ are linearly

independent, the transformation of equation (2.4) is

exact. Usually, though, nr << n,q and the solution
to the full system (eqs. (2.1)) is only approximated

by the solution to the reduced system (eqs. (2.5)).

The quality of this approximation ms the number
of vectors in • is increased is a key concern in

evaluating the effectiveness of a particular reduction

technique.
In all reduction methods considered herein, the

first nr vectors of the set are taken as the reduced

basis. Alternate approaches are available for assess-

ing the importance of a given vector prior to solution
of the reduced system and then discarding the vector

if its contribution is insignificant. These approaches

are not considered here because the cost of generat-

ing the set of vectors @ is often high and the cost of

solving equations (2.5) is often fairly low.
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2.2.1. Mode Displacement Method

The most widely used reduction technique is

the traditional mode displacement method. In this

method, equations (2.3) are solved for the set of vi-

bration modes with lowest nr frequencies and modes.
This set of vibration modes is used as the set of basis

functions O. When the system is undamped (C = 0

in eqs. (2.1)) or C can be expressed as a linear combi-

nation of M and K, equations (2.5) represent a set of
uncoupled differential equations which can be solved

independently. If the eigenvectors are scaled so that
¢TM¢i = 1, the uncoupled equations can be written
as

(ti + 2_iwiiti + w2qi = 9(t)fi (i = 1,...,nr)

(2.10)

where _i is the modal damping ratio. For certain

forms of external loading, such as 9(t) represented as

a piecewise linear function of time, an exact explicit
solution is available. This approach is described in

reference 16 and is used in the NASTRAN®computer

program (ref. 17).

Equations (2.1) are the result of a given finite el-

ement approximation designed to model the behav-

ior of the dynamic system. The goal of the reduc-
tion methods discussed in this section is to achieve

an accurate approximation to the solution of equa-
tions (2.1) with a small number of basis vectors. As
discussed, the vibration modes are the most com-

monly used basis functions in linear structural dy-

namics. There are two cases, however, where a large

number of modes are required for an accurate solu-

tion of equations (2.1), and therefore the performance

of the mode displacement method is poor. In the first

case, if the structure is loaded in an impulsive man-
her, many high-frequency modes tend to be excited.

These high-frequency modes must be included in the

analysis since their contribution to the total response

is significant. In the second case, if the response of

the structure contains a large static component, the

linear combination of vibration modes can do a poor

job of approximating the static deflection shape. The

reduction methods discussed in sections 2.2.2, 2.2.3,

and 2.2.4 alleviate this second accuracy problem with
the mode displacement method.

2.2.2. Mode Acceleration Method

To alleviate the poor accuracy of the mode dis-

placement method due to its poor representation

of the static component in the response, a method

was proposed by Williams and Jones (ref. 18) called
the mode acceleration method, which is described

in its modern computational forms in references 16

and 19. The mode acceleration method can be de-

rived by rewriting equations (2.1) as

u(t) - 9(t)K-lf - K-1Cd - K-1Mii (2.11)

The first term in equations (2.11) is the quasi-static

solution with load amplitude determined by 9(t).
This term is calculated by solving the equations

Kus = f (2.12)

This solution is carried out in the standard way by
first factoring K into a product of upper and lower

triangular matrices and then performing a forward
and backward substitution operation to obtain us.
The other two terms are calculated with the solution

for d and fi from the mode displacement solution.

In these terms K -1 is calculated as follows. Equa-
tions (2.3) can be rewritten in matrix form as

K_Ft -2 = MR (2.13)

where here _ is the full set of n9 eigenvectors and
1_ -2 is

1

1

_'nr

(2.14)

With the eigenvectors scaled so that

OTMo = I (2.15)

equation (2.13) can be written as

• TKo_"_-2 ----I (2.16)

Premultiplying by (oT)-I and postmultiplying by

cI_T yields

K_-2_ T = I (2.17)

or

K-1 = O_-2oT (2.18)

When • contains less than the full n 9 eigenvectors,

this expression for K -1 is only approximate. How-

ever, since fi is obtained from the mode displacement

solution based on nr modes (_), K-1Mii is exactly
equal to On-2_, and no approximation results from

introducing equations (2.18). For the damping term,
introducing equations (2.18) with nr vectors in _ is
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notexact.However,this isa convenientapproxima-
tionespeciallywhenmodaldampingisused.Consis-
tent with theseconsiderations,equations(2.11)can
be rewrittenas

u(t) = g(t)K-lf - Oa-2C_l - _-20 (2.19)

The key to the effectiveness of this method is that

the static solution is included explicitly in the solu-

tion. It is also simple to apply, since it essentially

just superimposes the static and mode displacement
solutions. Since Cl and _ are obtained from the mode

displacement solution, fl and ii are identical to the

values obtained in the mode displacement method.

2.2.3. Static Mode Method

An alternative approach to the mode acceleration

method that accounts for the static solution slightly

differently is termed the static mode method herein.

In this method, the static solution is included as

an additional "mode" in forming the reduced equa-

tions (2.5). The procedure begins by calculating a set
of nr - 1 eigenvectors _ with equations (2.3). Then
the static solution is calculated as

K(_I = f (2.20)

To improve the orthogonality of the basis vectors,
the components of the vibration modes are removed

from the static solution by use of the Gram-Sehmidt

process
¢1 = - (2.21)

where

c = q)TM(_ 1 (2.22)

The vector q51 is then concatenated with q_ to yield a

new • which is the complete basis. Equations (2.5)
now become coupled and can be solved directly or

reduced to an uncoupled form with the following

procedure. First the reduced eigenvalue problem

MZA + KZ = 0 (2.23)

is solved for the nr x nr diagonal matrix of eigen-

values A and the nr x nr matrix of eigenvectors Z.
Now a new set of basis vectors can be written as

= (I)Z (2.24)

When _ is substituted for _ in equations (2.6), (2.7),

(2.8), and (2.9), an uncoupled system results when C

is of the special form described in section 2.2.1.
The static mode method is similar to the mode

acceleration method in that the static displacement

vector is explicitly included in the solution. However,
in the mode acceleration method the amplitude of the

static displacement vector is not an unknown but

is determined by g(t), whereas in the static mode

method the amplitude varies to possibly improve

the solution. Also, this static displacement vector

participates in the calculation of d and ii to possibly

improve them as well.

2.2.4. Ritz- Wilson-Lanczos Method

A fourth method, which has become popular in

the past few years is termed the Ritz-Wilson-Lanezos

(RWL) method and is described in references 20, 21,
and 22. Instead of using eigenvectors of the structure,
this method uses a set of Lanczos vectors to form the

reduced equations. The algorithm used here follows

that in reference 20. The first vector is obtained by

solving the static equations (2.20) and then scaling
so that

O1 (_ITM$1) 1/2 (2.25)

The vectors i = 2 ..... m are obtained as follows.

First,

Kg_ = Mei_l (2.26)

is solved for (_i. Then ¢i is made M-orthogonal with

respect to all previously generated vectors by using

a Gram-Schmidt process

i-1

j=l

(2.27)

where

and scaling gives

czj = CfM$i (2.28)

i

¢i = /^T ^ \1/2

(Oi M¢i)

(2.29)

It has been pointed out in many references (e.g.,

ref. 21) that the M-orthogonalization (eq. (2.27)) is

theoretically required only with respect to the two

previously computed vectors. However, it is also
well-known that round-off errors cause the Lanezos

vectors to become less and less orthogonal. Per-

forming the Gram-Schmidt operation with respect to
all previously generated vectors will not ensure the

M-orthogonality of the vectors. However, it can im-

prove the orthogonality in some cases.

Following reference 20, a final step is performed in

generating the basis vectors to produce an uncoupled
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dynamicsystem.Of coursethis isusefulonly when
the systemis undampedor C is assumedto be
diagonal.Asin thestaticmodemethod,a reduced-
ordereigenvalueproblemis solved(eqs.(2.23)),and
a newsetof basisvectorsproduced.Theprocessof
explicitlycomputingthereducedstiffnessandmass
matricesrequiredin equations(2.23)helpsalleviate
theproblemscausedbythe lackof orth__ogonality_of
the Lanczosvectors. The matricesM and K in
equations(2.23)areassumedto be full. That is
noassumptionsaremadethat particulartermsin M
andK arezerobasedonthepropertiesofthevectors.

2.3. Transient Response Solution Method

When the reduction methods are used and general

damping is included in the model, equations (2.5) are
coupled. In principle any of the implicit or explicit

numerical integration methods used for solving equa-

tions (2.1) could be used to solve equations (2.5). In

contrast to equations (2.1), however, equations (2.5)

are low order, not stiff, and the primary concern is
accurately integrating every equation in the system.

Therefore an integration method which reduces trun-

cation errors in the solution is highly desirable. Ac-

curacy is especially important in sensitivity analy-

ses because errors in the solution process are usually
magnified in the calculation of derivatives.

An approach that allows the use of moderately

large time steps and makes the truncation error very

small is called the matrix series expansion method in
reference 23 and the transfer matrix method in refer-

ences 24 and 25 when applied to structural dynamics

problems and it is often referred to as a Taylor se-

ries method in numerical analysis texts (e.g., ref. 26).
This method expands the solution in a Taylor series

where the number of terms determines the accuracy

of the approximation. With this series, an expression
can be written for the solution at time t+At in terms

of the solution and load at time t as follows:

{q(t +At) } [WllCl(t -t- At) =" W21

+ [NllN21

w12]
w22] { q(t)O(t) }

N12] { g(t)fN22 O(t)f } (2.30)

It has been assumed here that the time variation of

the load g(t) is approximated as a piecewise linear

function of time, and therefore the second and higher

order derivatives equal zero. Expressions for Wij

and Nij are fairly complex and can be found in
references 23 and 24. The values of the coefficients

Wij and Nij depend on the number of terms taken
in the series.

The convergence properties of the Wij series for
an undamped, single-degree-of-freedom case can be

studied by considering the following Taylor series
expansion:

cos wAt 1 (wAt)2 (wAr)4 (wAt)6= +
2 4! 6!

( At) 8
+ 8-_--. .... (2.31)

It is well-known that round-off errors due to finite

precision arithmetic will cause large errors in this

series for "large" values of wAt. Thus if _ is taken as

wT_, an upper bound on At can be estimated based
on round-off error. In practice At usually needs

to be much smaller than this upper bound value

for two reasons. The first reason is that the input

load history may be a complicated function of time,

and At must bc small enough to accurately sample

this loading. The second, more important, reason is

that At must be small enough to accurately sample

the history of the output quantities. If At is larger
than the smallest significant period of response, peak

values of the response quantities will likely be missed.

Accordingly, in the studies reported herein At was

taken to be approximately one-eighth of the smallest
period. Since the number of terms in the series has

only a very small effect on the computational cost

of the method, 50 terms were used in this study to
make the truncations errors negligible.
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Chapter 3

Critical Point Constraint

3.1. Constraint Formulation

The general form of the constraint, equation is

9 (x,t) _<o (3.1)

where x is a vector of design variables and t is time.

An effective approach for ensuring that this con-
straint is satisfied for all values of t is the "critical

point constraint" approach described in reference 27,

pages 168-169. In this approach a set of peak val-

ues of the function gi (denoted critical points) is se-

lected. An obvious point to include is the time with

the "worst" value of 9i. However, if only this point is

included, an optimization process modifying a struc-

ture based on this information might unknowingly

produce a design where the constraint is violated

at another time point. To guard against this pos-

sibility, a number of important peaks are selected.
References 28 and 29 consider in detail the efficient

location of critical points in large-scale structures

problems with many constraints. This chapter

presents a method for selecting the most important

peaks as critical points.
In the work reported herein, constraints are as-

sumed to be placed on the displacements, velocities,

accelerations, and stresses in the structure. All these

constraints are treated similarly. Thus the critical

point constraint formulation is illustrated for the case

of displacements. Constraints are placed on selected

displacements such that,

t)l _< anow (3.2)

where ui are the displacements at specific points in

the structure and ttallo w is the absolute maximum

allowable value of the displacement. The critical

values of this constraint occur at points in time where

ui has the largest magnitude. These are identified

by examining every value of u along the response

history. In the implementation here, each constraint

is assumed to have a specified number of critical

points; five critical points for each ui "are selected.

Values of u where du/dt = 0 or values of u at the

end points of the time interval are local maxima of

9i and are termed candidate critical points.

3.2. Selection of Critical Points

The procedure for selecting the critical points

from these candidates can best be explained by refer-

ring to an example displacement time history shown

in figure 3.1. The critical points are labeled with
numbers and a few of the many candidate critical

points are labeled with letters. The selection crite-

ria applied to every candidate critical point are ex-

plained as follows by considering these few candidate

points. Candidate critical points a and c were dis-

carded because the absolute values of the displace-

ments at these points were smaller than those at

the five other critical points. The criterion for dis-

carding candidate points b, d, and e is slightly more

complicated. From figure 3.1 it can be seen that all

three candidate points have larger displacement mag-

nitudes than that of critical point 1, for example.

However, candidate points b, d, and e are all part.

of "major" peaks where a critical point is selected.

A second criterion applied to the selection process

is a requirement that only one critical point from

each major peak be selected. This ensures that the

critical points represent the total dynamic response

rather than just the high-frequency undulations on,
at worst, a single major peak.

.04

.02

ll' ._, 0

In.

-.02

%04

0

Figure 3.1.
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Time, sec

Example displacement time history illustrating

critical point constraint selection process.

A major peak is identified with the following

procedure. Whenever a critical point is selected after

comparing its magnitude with that at other critical

points, a special screening process is activated. This

screening process tests the displacement at every

subsequent time point to determine if it differs from

that at this last selected critical point by at least

a specified percentage (25 percent for the studies

reported herein). If so, all subsequent time points

are no longer considered part of the current major
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peak.Any candidatecriticalpointsidentifiedwhile
thisspecialscreeningprocessisineffectarecompared
onlyagainstthe lastselectedcriticalpoint.

An exampleis themajorpeakin figure3.1which
containspointsd and4. In the selectionprocess,
point d is initially selectedas a critical point and
thescreeningprocessis activated.Thethreepoints
wheredu/dt = 0 between point d and point 4 are

recognized to be part of the same major peak as d,

but since the magnitude of the displacements at these

points is smaller than at point d, they are discarded.

Point 4 is also part of the same major peak as point d,

but since the displacement magnitude there is larger
than at point d, it replaces point d as a critical point.

Before the next candidate critical point is considered,

the displacement has changed from that at point 4

by more than 25 percent and therefore is considered

to be on a new major peak.

3.3. Derivatives of Critical Point

Constraints

Once the critical points have been identified for

the nominal design, these can be used in calculating
sensitivities. Reference 27 demonstrates that the

change in time location of critical points can be

neglected in calculating derivatives of peak values

with respect to design variables by examining the

expression for the total derivative of gi with respect

to a design variable x. Considering a constraint

g(x, t) at a critical time tc gives

dg(x, to) Og Og dtc (3.3)
d_ - Ox + O_ d-_

The last term in equation (3.3) is always zero be-

cause at interior critical points Og/Ot = 0 and on the

boundary dtc/dx = 0. Accordingly, the sensitivity

calculations need to be performed only at the spe-

cific times where the critical points have been iden-

tified. This can result in a considerable savings in

computational time, especially when there are many

constraints, many time points, or many basis func-

tions used to represent the response. The details of
each sensitivity calculation method are discussed in

the next chapter.
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Chapter 4

Methods For Calculating Sensitivities

finitedifferencestepsize.ThelargerAx reduces the
condition error from the function evaluations and re-

sults in a more accurate value of du/dx. However,

the necessity of two function evaluations needed for

equation (4.2) makes the procedure computationally

more costly.

4.1.2. Using Vibration Modes as Basis
Functions

4.1. Finite Difference Methods

4.1.1. Forward and Central Difference Operators

Both the forward difference and central difference

methods have been used in this study to calculate

sensitivities. The well-known forward difference ap-

proximation to du/dx,

Au _ u(x + Ax) - u(x) (4.1)
Ax Ax

and the central difference approximation,

Au _ u(. + A.) - u(x - Ax) (4.2)
Ax 2Ax

are used. The truncation error for the forward

difference approximation is

er(Ax) _ Ax d2u (x + (Ax) (0 < _ < 1) (4.3)
2 dx 2 - -

and for the central difference approximation is

eT(Ax ) -- (ax)2 d3U(x + _Ax) (0 < _ < 1)
6 dx 3 - -

(4.4)

In applying equations (4.1) and (4.2), the selec-

tion of difference step size Ax is a concern. Selection

of a large step size results in errors in the deriva-

tive due to truncation of the operator (eqs. (4.3) and

(4.4)). Selection of a small step size can lead to er-
rors in the derivative due to the limited floating point

precision of the computer or algorithmic inaccuracies

in calculating u (condition errors). It is not uncom-
mon with the forward difference method (eq. (4.1))

that no acceptable value exists for Ax to produce an

accurate value of du/dx considering the conflicting

requirements of minimizing truncation and condition
errors. Because the truncation error associated with

the operator of equation (4.2) is typically less than

that of equation (4.1), it is possible to use a larger

For many of the studies herein the natural vibra-

tion mode shapes are used ms basis functions to rep-

resent the transient response. In calculating the re-

sponse of the perturbed design in equation (4.1) and

the two perturbed designs in equation (4.2), some

computational savings are possible relative to the

computations for the initial design.

If the mode shapes for the initial design are used

to represent the perturbed design, the cost of resolv-

ing the eigenvahm problem is eliminated. However,

the reduced set of equations for the perturbed system
must still be formed and M, C, and K are now full.

This coupled system is then solved with the matrix

series expansion method described in section 2.3.

If the updated mode shapes for the perturbed de-

sign are used in the analysis, many eigensolution pro-
cedures, such as the subspace iteration used here, can

begin with the mode shapes from the initial design

as approximations. Since the perturbation in the de-

sign is small, the subspace iteration procedure con-

verges rapidly. However, at least one factorization of
K is required. For large finite element models this

can be the largest part of the computational cost.

For most of the studies in this paper, the forward
difference method used the initial mode shapes to

represent the perturbed design. Because the central
difference method was used for reference values of

derivatives, updated mode shapes were calculated for

the two required perturbed designs. In both cases
because of the critical point constraint formulation,

the transformation from modal coordinates to phys-

ical coordinates (e.g., displacements, stresses) is per-

formed only at the critical times instead of at all time

points.

4.2. Semianalytical Methods

The direct method for sensitivity calculation is

derived by differentiating equations (2.1). The

derivation presented here follows that in reference 27,

pages 169-171. After differentiating equations (2.1)

with respect to the design variable x the result is
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Mdii cdu KdU d_ dMfidx + dx + dx - g( t )- _x

dC dK

- d%-a- d%-U (4.5)

This system of differential equations of order ng could
be solved directly for the sensitivities du/dx, dfi/dx,

and dii/dx. However, just as for the response equa-
tions, it is more efficient to consider a reduced form

of the sensitivity equations which can be obtained

by differentiating equations (2.5) with respect to x
to yield

-dx g(t)- dx

dC dK

- d_-_l- _-x q (4.6)

The first step in forming this equation is the calcula-

tion of the derivatives of f, M, C, and K (eqs. (2.9),
(2.6), (2.7), and (2.8)) with respect to x. Using equa-

tions (2.9) gives the derivative of f with respect to x
as follows:

d-f dO T ,_T df (4.7)
dx - dx f + dx

The force f is frequently not a function of the design

variables; this simplifies equation (4.7). Also, with
equation (2.6), the derivative of M with respect to x
can be written as

dM _x d_T M q_ dq_ (4.8)dx - _T _ + dx + _TM dxx

Similar expressions can be written for the derivatives
of C and K.

The derivative dM/dx in equation (4.8) (simi-

larly for dC/dx and dK/dx) is in general, difficult

to calculate because the finite element model may

be composed of diverse element types whose prop-

erties are complicated functions of the design vari-
ables x. For this reason, these derivatives are often

replaced with finite difference approximations. This

combination of analytical differentiation of the re-

sponse equations with finite difference matrix deriva-

tives is known as a semianalytical approach. The

semianalytical methods presented herein for calculat-

ing transient response quantities all use the forward

difference operator to approximate dM/dx, dC/dx,

dK/dx, and df/dx. For several important classes of
design variables, however, M, C, and K are linear

functions of x. For example, M and K in a finite

element model composed of truss members are linear

functions of member cross-sectional area. In these

cases, there are no truncation errors and large finite

difference step sizes can be used to reduce the condi-

tion error and produce accurate derivatives.

Calculation of the first term in equation (4.7)

and the second and third terms in equation (4.8)

depends on the particular choice of basis functions _.

Considerable reduction in computational cost results

if the vectors (I) are taken to be independent of x that

is fixed. Methods which are less costly than exact

methods are also available to approximate d¢/dx.
Two semianalytical procedures which address these
concerns are discussed in sections 4.2.1 and 4.2.2.

4.2.1. Fixed-Mode Semianalytical Formulation

If the basis vectors are assumed not to be func-

tions of the design variables x, d'_/dx equals 0. This

significantly simplifies equations (4.7) and (4.8). Af-
ter forming the derivatives of f, M, C, and K the

right-hand side of equations (4.6) can be formed us-

ing _, dl, and q from the solution of equations (2.5).

The matrix series expansion method ensures that ac-

curate values of q, dt, and q are available for this

step. Equations (4.6) can then be integrated to yield
di_t/dx, ddt/dx, and dq/dx. Herein this fixed-mode,

semianalytical implementation of the direct method

is called the semianalytical method.

_4.2.2. Variable-Mode Semianalytical
Formulation

If the basis functions are assumed to be functions

of x, the calculation of dO/dx either exactly or ap-

proximately is required to form equations (4.7) and
(4.8). Vibration modes are the most popular basis
functions, and the calculation of their derivatives has

been studied extensively. Reference 30, for exam-

ple, surveys several methods for calculating deriva-

tives of vibration mode shapes from a computational

point of view. One of the most popular methods,

Nelson's method (ref. 31), requires a faetorization of
the system equations for each eigenvector considered.

This can be a considerable computational burden for

large systems. Since the overall objective here is

the accurate calculation of transient response sen-

sitivities, not eigenveetor sensitivities, it seems desir-

able to investigate cheaper approximate methods for

calculating dO / dx.

One approximate method for calculating the

cigenvector derivatives is similar to the modal ap-

proach for transient analysis. This modal method
approximates each eigenvector derivative as a
linear combination of the modes themselves.

In many eases, however, a very large number of
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eigenvectorsare requiredfor accuratederivatives.
Furthermore,the eigenvectorderivativeapproxima-
tion producedby this methodcannotimprovethe
transientresponsesensitivitiesbecausethey are
containedentirelywithin the spanof the modes
themselves.

A methodproposedby Wang(ref. 32) to alle-

viate the poor performance of the modal method

also improves the transient sensitivities. This modi-

fied modal method is derived by first differentiating

equations (2.3) to yield

d 2 dK • w2dM(K - ajTM)dO) wj MOj + ¢_j
3 dx - dz -dx j 'J_x

(4.9)
This equation cannot be solved directly since the left-

hand side is singular. Wang's approach, however,

was to calculate a pseudostatic solution to this equa-

tion by neglecting 2c0j M on the left-hand side of equa-
tions (4.9). The solution to this pseudostatic equa-

tion introduces the change in basis associated with

changes in the design variables and is significant in

improving the transient response sensitivities. The

mode shape derivative can then be written as

dOj _ ( dOj "I nr
dxx \dx-x ]s + y_ AJkOa" (4.10)

k=l

where (dOj/dx)s is the pseudostatic contribution.

The coefficients Ajk are obtained by substituting
equation (4.10) into equations (4.9), multiplying by

Oy, and simplifying as

2 T Oja,jOk (dK o.,2 dM "__-- jr)
Ajk

cd2(aj2 _ &,2]
kt j t_J

(k # j) (4.11)

or

1 TdM •
Ajj=-_Oj d-_ j (k =j) (4.12)

Given these approximate values of eigenvector deriva-

tives, equations (4.7) and (4.8) can be formed. Then

equations (4.6) can be solved for d6i/dz, d_i/dz,

and dq/dx just as in the fixed-mode, semianalytical
method.

4.2.3. Recovery of Physical Sensitivities

Given dq/dx, the derivative of the physical dis-

placement vector du/dx can be written as

du dq dO
d--x = Od-xx + dx-x q (4.13)

with similar expressions h)r dfl/dx and dfi/dx. The

calculation of stresses begins with

_r = Su (4.14)

where S is the stress transforination matrix. Substi-

tuting equation (2.4) yields

= SOq (4.15)

when equation (4.15) is differentiated, the stress'
sensitivities can be written as

d_ dn
S_7-, _- + + S (4.16)dSoq dO

dx - ax dx dx q

The matrix dS/dx is approximated with the forward

difference operator. Because of the critical point con-

straint formulation, the transformation from these

modal quantities to physical displacements, veloci-

ties, accelerations, and stresses is performed only at
the critical times.

4.2.4. Mode Acceleration Method

The mode acceleration method was presented in

chapter 2 as a technique for improving the dynamic
displacements and stresses when the static compo-

nent is significant. It is also possible that it can im-

prove the sensitivities of displacements and stresses.

An expression for the sensitivities using the mode

acceleration method is obtained by first rearranging

equations (4.5) to yield

du(t)_K_l [df dK u d/1 dC
dx Ldxg( t ) - dxx - C dx dx iJ

_M dii dMii ]
d--_ - _ J (4.17)

If a reduced basis approximation is applied uniformly

to every term in equations (4.17), the resulting du/dx
would agree with that obtained front the solution

of equations (4.6). The objective of a mode accel-
eration solution is to selectively apply the modal

approximation to equations (4.17) with the goal of

improving the values of du/dx. In applying the

mode acceleration method to the transient response

problem (eqs. (2.11)), u and ii are obtained from

the mode displacement method. Here, in apply-

ing the mode acceleration method to the sensitivity

equations, u is obtained front the solution to equa-

tions (2.19) and dfa/dx and dfi/dx are obtained from

the solution to the mode displacement, semianalyti-

cal equation (eqs. (4.6)). In the derivation here, the
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modes_ areassumedto befixed.Substitutingequa-
tions(2.19)andfl = (I)/t,fi = ¢_1,dfl/dx = _ddt/dx ,

and dfi/dx = '_di!l/dx into equations (4.17) yields

du(t)

dx - K-l [_xg(t) - dK [g(t)K-lfdxx

- d_Coitdx -Modi!tdx - dMOqJdx (4.18)

The modal approximation for K -1 (eqs. (2.18)) is

introduced into all terms in equation (4.18) that
involve damping just as in the mode acceleration

solution described in chapter 2. It was also pointed

out in chapter 2 that K-1M(I) in equation (4.18)

is exactly (I)_ -2. Based on these considerations,

equation (4.18) can be simplified to yield the mode

acceleration solution of the sensitivity equations

]dxx K-if g(t)

Ldx _x (1 - Oft-2C_x

- dx j _t- dx
(4.19)

The key to the effectiveness of this mode acceleration

sensitivity method is the usage of the exact K -1

in the calculation of the K-l(dK/dx)OFt -2 and
K-l(dM/dx)¢_ terms. The explicit calculation of

these terms expands the basis beyond the span of

the modes in a manner similar to the pseudostatic
term in the modified modal method described in the

previous section. When equations (4.19) are used,
the stress sensitivities can be calculated as

da S du dS
= dx + (4.20)

where u is obtained from equations (2.11).

It is worthwhile to contrast the sensitivity ap-

proach of equations (4.19) with an alternate approach
of a fixed-mode, overall forward difference method

with the response quantities calculated with a mode
acceleration method. This overall forward difference

approach has one obvious drawback. The mode ac-

celeration method requires the costly factorization of

K for the perturbed design. Therefore, much of the

cost savings achieved by keeping the modes fixed is
lost. A second defect of the overall forward difference
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method is that it is not as effective as the method

of equations (4.19). The mode acceleration method

in the overall finite difference procedure provides a

good approximation to the first term (pseudostatic

term) in equations (4.19). However, the key effects

of the K-l(dU/dx),_ -2 and the U-i(dM/dx),_
terms are completely neglected.



Chapter 5

Numerical Studies

The differenttransient responsemethodsde-
scribedin chapter2 andthe sensitivitycalculation
methodsdescribedin chapter4 areappliedto three
exampleproblemsin thischapter.Thethreeexample
problemsaresmallbut theyall havecertaincharac-
teristicswhichcomplicatethe dynamicsand sensi-
tivity calculations.Thefirst exampleis thefive-span
beamwith relativelyclosely spaced frequencies and

loaded with a moment applied at a single point. As

a result, many modes participate in the dynamic re-
sponse. The second example is the delta wing loaded

with a uniform pressure load. Although the higher

frequency modes are not significantly excited by this

loading, the analysis is complicated by the laminated

plate elements in the model and the sensitivity anal-

ysis is complicated by the lamina thickness design

variables considered. The third example is a can-

tilever beam with a stepped cross section loaded with

an applied rotation at the root. This loading is iner-

tial, depends on the mass, and therefore also depends

on the values of the design variables. The first two

examples consider point mass and standard thick-
ness design variables. The cantilever beam example

also includes so-called shape design variables (sec-

tion lengths) that are known to cause difficulties in

the sensitivity analysis in some cases.

One of the key questions addressed in this chap-

ter is how well a particular set of basis vectors rep-

resents the full system of order n 9. This full system,
however, is the result of a particular finite element

discretization. Thus the accuracy of the response or
sensitivities as a function of the finite element mesh is

also an appropriate question. This question is espe-

cially important when a large number of basis vectors

(nr close to ng) are required for an accurate solution
in a problem with a given finite element mesh. Either

the basis vectors are doing a very poor job of span-

ning the solution space or the loading is legitimately

exciting this high-frequency behavior.

In this chapter two terms are used to describe

these studies which consider the dynamic response
as a function of the number of basis vectors or the

number of finite elements in the modell The effect

of the number of basis vectors on the accuracy of

the response or sensitivities for a given finite element
mesh is called a "modal convergence" study. In this

case, the goal is for the nr basis vectors to provide

an accurate solution to the approximate equations of

order rig. The question of whether the finite element
model associated with this system is an accurate

representation of the continuum is addressed in a

"mesh convergence" study. In some cases, it will be

shown that the modal convergence is strongly related

to the mesh convergence. That is, when a large

number of basis vectors are required for an accurate

solution for a given finite element mesh, the finite

element mesh is doing a poor job of representing the

continuum. In other cases, even though the finite

element mesh is providing an accurate representation

of the continuum, some sets of basis vectors are doing

a poor job of representing the response or sensitivities

for this n_th order system.
Several additional comments on the concept of

a modal convergence study are in order. Clearly

the use of the term convergence is imprecise because

the accuracy of the approximate solution with dif-
ferent numbers of modes is compared only with the

finite-degree-of-freedom solution rather than the con-
tinuum solution. However, it is assumed that an

"acceptable" finite element model must do a good

job of representing the low-frequency modes of the

structure. Therefore, the accuracy of the dynamic
solution with a small number of modes from the

finite-degree-of-freedom model is a very reasonable

approximation to the accuracy of the dynamic solu-
tion with a small number of modes calculated from a

continuum model. Thus the convergence of the solu-
tion a,s a function of the number of modes calculated

from the finite element model is a reasonable approxi-
mation to the true modal convergence obtained when
the modes are calculated from the continuum model

as long as the number of modes considered is small.

Furthermore, if the number of modes required for an

accurate calculation of either the response or sensi-

tivities is not small, the basis vectors or the method

will be considered poor.

5.1. Five-Span Beam Example

The first example considered is a five-span, planar

beam example taken from reference 33 and shown

in figure 5.1. An initial investigation of the dis-

placement transient response of this problem was
also considered in reference 34. In most of the

studies, the beam is modeled with three beam fi-

nite elements per span resulting in 26 unconstrained
degrees of freedom. The effect of finite element

discretization is considered by developing alternate

models with 6, 9, 12, ... elements per span. As
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shownin figure5.1,translationalandrotationalvis-
cousdamperswerealsoaddedto the beam.These
devicesare representativeof velocityfeedbackcon-
trollerswhichmightbeaddedto flexiblestructures.
Cases with and without dampers were considered.

The numerical values of the damping coefficients

from reference 33 of Cl = 0.008 sec-lb/in, and c2 =

1.2 sec-lb were used. In one example, modal damp-

ing with _i -- 0.005, which is intended to represent
typical structural damping, was used instead of the

discrete dampers. A case was also considered where a

1.0-1b mass (approximately 20 percent of the mass of

the beam) was added to the beam at the location of

the translational damper. The eigenvalues for three

cases using the model with three elements per span

are shown in table 5.1. The additional point mass

has a significant effect on the frequencies, whereas

the dampers have little effect. The effect on frequen-

cies of increasing the number of elements per span in
the finite element model is shown in table 5.2. It can

be seen that the lowest 10 frequencies are fairly well

converged even for the model with three elements

per span. In the transient analysis, the applied load-

ing for all problems consisted of a point moment of

0.04405 in-lb applied at the right end of the beam.

Two different time functions for this load, a step and
a ramp (shown in fig. 5.1), were considered.

Beam .cross
section

u 1 u2 u3 u4 u5
t t m L f t I _, , 2.0in.,

2 5 n = 0.0625 in.

.04405 IR_/amp load MI
M,

in-lb i _.04405
I/
FI

0 .2 t, sec 0

Step load

t, sec

Figure 5.1. Five-span beam with applied end moment.

5.1.1. Beam Dynamic Response

The first part of this study focused on the tran-

sient response of the beam with the mode dis-

placement, mode acceleration, static mode, and

Ritz-Wilson-Lanczos (RWL) methods. Displace-
ment, velocity, acceleration, and stress resultant re-

sponse quantities are considered. For this beam ex-

ample, all these response quantities are taken at a

location 10.0 inches from the left end of each span.

This point is the end of the first element in each span
when three elements per span are used in the model.

5.1.1. I. Character of response. In the first

case, the ramp loading was applied to the undamped

Table 5.1. Eigenvalues For Three Five-Span Beam Cases

Mode

1

2

3

4

5

6

7

8

9

10

Undamped

Damped with with point

Undamped point dampers mass

Frequency Hz Frequency Hz Damping ratio Frequency, Hz

1.1707 1.2210 0.0851 0.9401

1.2991

1.6254

2.0491

2.4628

4.7343

5,0105

5.6472

6.4153

7.1274

1.2926

1.6298

2.0910

2.5497

4,8426

4.9785

5.7703

6.4178

7.2229

.0352

.0690

.0590

,0958

.0044

.0413

.0126

.0407

.0193

1.2594

1.5445

1.8005

2.3729

4.2327

4.8858

5.6400

5.9261

6.8762

Table 5.2. Beam Frequencies With Different Numbers of

Finite Elements Per Span

Frequency, Hz, for

3 elements 6 elements 9 elements 12 elementsMode

1 1,1707

2 1,2991

3 1.6254

4 2.0491

5 2.4628

6 4,7343

7 5.0105

8 5.6472

9 6.4153

10 7.1274

1.1698

1.2979

1.6230

2.0445

2.4547

4.6828

4.9504

5.5652

6.3053

6.9974

1.1698

1.2978

1.6229

2.0442

2.4542

4.6798

4.9469

5.5601

6.2980

6.9874

1.1698

1.2978

1.6229

2.0442

2.4542

4.6792

4.9462

5.5593

6.2967

6.9857

beam modeled with three elements per span. All

26 modes were used in the analysis. Time histo-

ries of selected displacement, velocity, acceleration,

and bending moment components are shown in fig-

ures 5.2, 5.3, 5.4, and 5.5, respectively. The displace-
ment history (fig. 5.2) is relatively smooth indicat-

ing that only the low-frequency modes of the beam

are contributing to the response. The velocity and

bending moment response histories are more jagged

indicating participation by higher frequency modes.

The acceleration history (fig. 5.4) is extremely jagged

with contributions from the highest frequency modes
represented by the finite element model.

The impulsive nature of the step load makes

the higher frequency modes much more important.

This can be seen in figure 5.6 where the time his-

tory of velocity in the second span (fig. 5.1) /t 2 is
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shown.Bycomparingthisvelocityhistorywith that
in figure5.3the increasedimportanceof the high-
frequencymodesbecomesobvious.

.O2

.01

U2' 0
in.

-.01

-.02
0

Figure 5.2.

I i i I l !

•5 1.0 1.5 2.0 2.5 3.0

Time, sec

Time history of displacement u2 for five-span

beam subjected to transient end moment. Ramp
load; undamped beam.

.2

u2" 0
in/sec

-.l

-.2

0

Figure 5.3.

. 1.0 1.5 2.0 2 3.0

Time, sec

Time history of velocity u2 for five-span beam

subjected to transient end moment. Ramp load;

undamped beam.

The addition of the point dampers shown in fig-

ure 5.1, on the other hand, tends to reduce the im-

portance of the high-frequency modes. This is shown

in figure 5.7 where again h 2 is shown. Comparing fig-

ures 5.7 and 5.3 shows that the velocity history for

the damped case is significantly smoother than for
the undamped case.

This changing character of the time histories with

temporal or spatial differentiation of the response

function or the addition of dampers is expected. The

implications of this phenomenon on calculating the

sensitivities of these response quantities are discussed
below.

5.1.1.2. Modal convergence. When vibration
modes or other functions are used to reduce the ba-

sis in a transient response problem (eq. (2.4)), the

IJ2'

in/sec 2

Figure 5.4.

3

2

1

0

-1

-2

3 i i i i i i"o .5 1.0 1.5 2.0 2.5 3.0

Time, sec

Time history of acceleration fi2 for five-span

beam subjected to transient end moment. Ramp

load; undamped beam.

.01

MS' -.01
in-lb

-.02

-.03
0

Figure 5.5.

' i0.5 1 115 210 2'.5 3.0

Time, sec

Time history of bending moment in span 5 for

five-span beam subjected to transient end mo-

ment. Ramp load; undamped beam.

tJ 2,

in/sec

Figure 5.6.

.4

.3

.2

.1

0

-.l

-.2

-.3 o ; l'0 '51.

Time, sec

Time history of velocity i_2 for five-span beam

subjected to transient end moment. Step load

undamped beam.

key question is how many modes are required for
an accurate solution. This section addresses that

question for the five-span beam example with the

response calculated with mode displacement, mode
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acceleration,static mode,andRWLmethods.Un-
lessotherwisestated,all the responsequantitiesare
consideredatcriticaltimesselectedwith themethods
discussedin chapter3.

.10

.O5

u2, 0
in/sec

-.05

-.10
0

Figure 5.7.

i i t | q J. 1.0 1.5 2.0 2.5 _ .0

Time, sec

Time history of velocity /t2 for five-span beam

subjected to transient end moment. Ramp load;

damped beam.
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Figure 5.8.
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Modal convergence of selected displacements for

five-span beam. Ramp load; undamped beam;

mode displacement method.

The baseline case of ramp loading applied to the

undamped beam modeled with three elements per

t C •

sec

O ;t ) 1.73

[] t'_2 2.11

A h 3 1.13

• h 5 .28

• _5 2.39

.2

-.3

0 ! 0 20 30

Number of modes

Figure 5.9. Modal convergence of selected velocities for five-

span beam. Ramp load; undamped beam; mode

displacement method.

span is considered first. Figure 5.8 shows the conver-
gence of selected displacements at critical points as

a function of number of modes. The displacement-

critical point combinations were selected to be rep-

resentative of both the largest and smallest critical

values. In figure 5.8 and in all the other figures show-

ing convergence of response quantities or sensitivi-

ties, the figure key indicates the quantity and the
time of occurrence in seconds. In all cases the con-

vergence is very good with approximately 10 modes
yielding a converged solution. Figure 5.9 shows a

similar plot for velocities. Again the convergence is

good. The modal convergence for accelerations, how-

ever, is poor as shown in figure 5.10. Figures 5.11 and

5.12 show the modal convergence of selected bending
moments and shear forces, respectively, and again,

the convergence is poor.

To possibly alleviate this poor convergence, the
altcrnate reduction methods discussed in chapter 2

were applied to this problem. The modal conver-

gence for displacements calculated with the mode

acceleration method (fig. 5.13) is even better than

that found with the mode displacement method. The

convergence of bending moments and shear forces

has improved dramatically from the mode displace-

ment results as can be seen in figures 5.14 and 5.15.
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As mentioned in chapter 2, the mode acceleration

method does not apply to the calculation of veloci-
ties and accelerations.

A similar improvement was noted with the static

mode method. As an example, consider the excellent

convergence of shear forces shown in figure 5.16.

However, tile addition of the static solution provides

no improvement in the convergence of acceleration as

shown in figure 5.17.
The RWL method is attractive because of the

significantly reduced cost of calculating the vectors

compared with solving the eigenproblem. In this

five-span beam example, the modal convergence is

also as good as the mode acceleration or static mode

methods. Tile good convergence of the shear forces

is shown in figure 5.18. Like the other reduction

methods, however, the convergence of accelerations

is poor (fig. 5.19).

The modal convergence of the response quanti-

ties for the step-loaded case is generally much poorer

than for the ramp-loaded case. The convergence of

the displacements is reasonably good. Convergence

of velocities, accelerations, and stresses, however, is

poor. This poor convergence is not surprising con-

sidering the "jaggedness" of the velocity time his-
tory shown in figure 5.6. As an example, two figures

with the convergence of bending moments plotted as
a function of the number of modes are shown. The

first, figure 5.20, shows the bending moments cal-

culated with the mode displacement method. Con-

vergence is poor but this is not surprising since the

convergence was poor with the mode displacement

nmthod for the ramp-loaded case (fig. 5.11). For
this ramp-loaded case, the convergence of the bend-

ing moments improved dramatically when the mode
acceleration method was used as can be seen in

figure 5.14. Although convergence is improved for

the step-loaded case by using the mode acceleration

method (fig. 5.21), the convergence is still fairly poor.

Judging from the velocity time history in fig-

ure 5.7, it might be expected that including damp-

ing would improve the modal convergence of the re-

sponse quantities. For the ramp-loaded, undamped

case, the poorest convergence was for the acceler-

ations (fig. 5.10). For the ramp-loaded case with
discrete dampers, there is an improvement in modal

convergence as seen in figure 5.22. For the case with

0.5 percent modal damping there is also a slight im-

provement in modal convergence. However, in nei-
ther case does the damping completely alleviate the

poor convergence.

All the previous convergence results are at critical

points located by the method described in chapter 3.
When a different number of modes is used in the anal-

ysis, the critical time for a particular critical point
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usually shiRs slightly. Consequently, the results for

a given response quantity critical point combination
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occur at different times depending on the number

of modes used in the analysis (the values shown in

parentheses in the figures are for the most refined so-

lution). It is natural to ask whether response quanti-

ties at fixed times plotted as a function of number of

modes would show similar convergence. Figures 5.23

and 5.24 show the modal convergence of selected ve-

locities and bending moments, respectively, at fixed

times. The mode displacement method was used in

the analyses. The particular response quantities and

times were selected to span the range between largest

positive and negative values. As can be seen in fig-

ure 5.23, the convergence of velocities is good. From

figure 5.24, it can be seen that the convergence of the

bending moments is poor and remarkably similar to

the critical point convergence results (fig. 5.11). Thus

it would appear that the critical point constraint for-

mulation does not significantly affect the modal con-

vergence of the response.

5.1.1.3. Mesh convergence. Table 5.2 shows

the convergence of the lowest 10 frequencies as a

function of the number of elements used to model

each span of the beam. The convergence of these

lower frequencies is rapid. The convergence of various

response quantities as a function of the mesh is also

a concern.

The modal convergence cannot be uncoupled

from the mesh convergence. This was discussed in

reference 33 for the derivatives of damping ratios
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calculated with undamped vibration modes. For sev-

eral cases, the modal convergence of the derivatives

was poor. As the mesh was refined, convergence wa_s

achieved only when almost all the available modes

were used in calculating the damping ratio. Clearly,
this is an example where the modal basis provides a

very poor approximation to the actual solution.
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span. Ramp load; undamped beam; mode

displacement method.

Figure 5.25 shows the modal convergence of shear

force for the five-span beam modeled with six ele-

ments per span and the transient analysis performed

with the mode displacement method. The conver-

gence for this case is just. as poor as for the case with

three elements per span shown in figure 5.12. How-
ever, a plot of convergence of this shear force as a

function of the nmnber of elements per span, when all

modes are used in each analysis (figure 5.26), shows
good convergence. Clearly, the convergence of shear

forces for the ramp-loaded five-span beam is similar

to that reported for derivatives of damping ratios in

reference 33; the vibration modes are simply doing a

poor job of representing the solution.

Figure 5.27, which shows the convergence of ac-
celerations for the step-loaded beam as a function

of elements per span, indicates a different behavior,
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however. Here, the very poor convergence is due

to the higher frequency modes being excited by the

step loading. As the mesh is refined, the number of
high-frequency modes increases, and these continue

to have a significant contribution to the acceleration.

In evaluating the accuracy of the sensitivity cal-
culation procedures in section 5.1.2, particular atten-

tion must be paid to the convergence characteristics.

Some convergence problems such as those caused by

the use of vibration mode shapes can be improved by
the use of alternate basis functions. However, other

convergence problems, such as for the accelerations

in the step-loaded case, are inherent in the problem
definition.

5.1.2. Sensitivities of Beam Dynamic Response

In the previous section, the transient response of
the five-span beam was considered in detail. In this

section, the calculation of sensitivities of displace-

ments, velocities, accelerations, and stresses with re-

spect to various design variables is considered.

5.1.2.1. Design variables. Two different classes

of design variables were considered. The first design

26
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variable is a concentrated mass m (initially zero) at

the location of the translational damper. This de-
sign variable was also considered in reference 33. The

derivatives of the system mass and stiffness matrices

with respect to this design variable are constant and

zero, respectively. As a consequence, the derivatives

of the system matrices required in the semianalyti-

cal methods can be calculated exactly by a simple

forward difference operator. The beam thicknesses

in each of the five spans were also design variables.

Derivatives with respect to the five thickness design
variables showed similar characteristics. Herein, re-

sults for derivatives with respect to the thickness in

the rightmost span h 5 along with derivatives with

respect to the point Inass 77_are presented.

5.1.2.2. Effect of finite difference step size. The

methods described in chapter 4 for calculating sensi-

tivities all rely on finite difference operators at some

stage in the algorithm. The forward and central

difference methods rely on the operators in equa-

tions (4.1) and (4.2) to calculate derivatives of re-

sponse quantities. In the semianalytical methods, the

derivatives of the system matrices are calculated with

the forward difference operator in equation (4.1). In
all cases the finite difference step size must be se-

lected so that the operator provides a reasonable ap-

proximation to the derivative. If the step size is too

large, the error due to truncating the series approx-

imation of the derivative is large. If the step size

is too small, the numerical condition error in per-

forming the function evaluations (dynamic analyses)

becomes large.

To assess the effect of step size on the calcula-

tion of sensitivities for the five-span beam, deriva-
tives were calculated with the three methods with

various step sizes. In this study the beam was un-

damped and the ramp loading was applied. All 26

vibration modes were included in the analysis. Fig-

ure 5.28 shows the estimated derivative of displace-

ment u2 at critical point 5 with respect to the point
mass design variable m as a fimction of step size.

As mentioned, the derivatives of the system matri-

ces with respect to this design variable can be calcu-

lated exactly in the semianalytical method. As a re-

sult, the derivative estimated with the semianalytical

method is approximately constant for the six-order-

of-magnitude change in step size shown in the figure.

The central difference method uses the higher order

operator and provides good accuracy over inost of

the step size range shown in the figure. The forward

difference operator provides good accuracy with the

smaller step sizes but begins to diw?rge earlier for the

larger step sizes than the central difference method.

Figure 5.29 shows the estimated derivative of dis-

placement u 1 at critical point 5 with respect to the

rightmost span thickness h5 as a function of step size.

In this case, the system mass matrix is a linear flmc-

tion of this design variable and its derivative can be

represented exactly by the forward difference oper-

ator, The system stiffness matrix is a cubic flmc-

tion of this design variable and its derivative can only

be approximated by the forward difference operator.

Still, the derivative approximation computed by the

semianalytical method is very accurate except for the

largest step size and is no worse for this case than the

much more costly central difference method. Again,
the forward difference operator results in substantial

errors for the larger step sizes.

Because this example has a relatively small num-

ber of degrees of freedom, there is little condition

error when small step sizes are used. To assess the

effects of condition error which would occur for larger
problems, the derivative approximations for the five-

span beam problem were also calculated with 32-

bit floating point precision compared with the 60-

bit precision used in the studies described above.

The estimated derivative of displacement u2 at criti-

cal point 5 with respect, to the point mass is plot-

ted as a function of finite difference step size in

figure 5.30. Derivative approximations are calculated

using the semianalytical method, the central differ-

ence method, and the forward difference method. For

the larger step sizes, the results from all three meth-
ods agree well with those calculated with 60-bit pre-

cision. For step sizes smaller than 10 -4 in., there is

2_'
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5.1.2.3. Modal convergence of sensitivities. The
first case considered is the undamped beam with the

ramp load. Figure 5.31 shows the convergence of
selected estimated derivatives of displacements with

respect to m at various critical points. The mode

displacement method was used and the derivative ap-

proximations were calculated with the central differ-

ence operator with updated modes. The convergence

is good although slightly poorer than the conver-

gence of the displacements themselves (fig. 5.8). The

convergence of the estimated displacement deriva-
tives with respect to the thickness design variable is
similar.

Although the modal convergence of the velocities

for this case is good (fig. 5.9), the convergence of se-
lected estimated derivatives of velocity with respect

to m is generally poor (fig. 5.32). Given the poor

convergence of the accelerations shown in fig. 5.10,

it is not surprising that the convergence of the sen-

sitivities of the accelerations is also very poor. From

figure 5.33 it can be seen that the derivative approx-

imations of the four selected critical point acceler-

ations with respect to the thickness design variable

are essentially not converging with increasing num-
ber of modes. It should be pointed out again that

displacements with respect to mass design vari-

able. Ramp load; undamped beam; mode dis-

placement method; central difference operator.

these derivative approximations of velocity and ac-
celeration are calculated with the central difference

method and updated mode shapes; thus, the numer-

ical errors are minimized. The poor convergence ex-

hibited in figures 5.32 and 5.33 is due to the poor ap-

proximation of the sensitivities by the mode shapes.

Similar modal convergence behavior is observed
for sensitivities of the stress resultants. This is con-

sistent with the poor convergence of the stress resul-

tants calculated with the mode displacement method

(figs. 5.11 and 5.12). Figure 5.34 shows the poor
convergence of derivative approximations of selected

bending moments with respect to the thickness de-

sign variable. It can be seen that the convergence of

the bending moment derivative approximation in the

rightmost span with respect to the thickness in the

rightmost span (dMs/dhs) is especially poor.

It was shown in the previous section that sev-

eral approaches are available for overcoming the

poor convergence of bending moments and shear

forces in this beam example. The mode acceleration,

static mode, and RWL methods all produced good

modal convergence of bending moments and shears

as shown in figures 5.14, 5.15, 5.16, and 5.18. Un-

fortunately this type of dramatic improvement does
not occur for the sensitivities of the stress resultants.

Figure 5.35 shows the convergence of the bending
moment derivative approximations with respect to

28



du i

-fffiT'
in/sec

lb

Figure 5.32.

.4

.2

-.2

-.4

-.6
0

2O0

100 I

dui ]

01-
in/sec2 /

in. t

- 100

-200/
0

Figure 5.33.

t¢,l

sec

0 dt'_ I/dm 1.73

[] dt'_2/dm 2.11

A d[_3/dm 1.29

• d[_5/dm .28

• df_5/dm 2.39

I I I
I0 20 30

Number of modes

Modal convergence of derivative approxima-

tions of selected velocities with respect to mass

design variable. Ramp load; undamped beam;

mode displacement method; central difference

operator.

t C ,

sec

0 dll I/dh 5 1.25

[] dh'l/dh 5 1.58

A dii2/dh 5 2.30

• dh'5/dh 5 2.84

I I I
10 20 30

Number of modes

Modal convergence of derivative approxima-

tions of selected accelerations with respect to

thickness design variable. Ramp load; un-

damped beam; mode displacement method;

central difference operator.

dM i

dh5 0

in-lb

in.

-1
0

Figure 5.34.

.4

.2

dM i

"Y_5' o
in-lb

in.
-,2

-.4

-.6
0

Figure 5.35.

t(.,

sec

0 dMi/dh 5 1.29

[] dMl/dh5 1.58

A dM3/dh 5 1.36

• dM4/dh 5 .56

• dMs/dh 5 .47

I I
10 20 30

Number of modes

Modal convergence of derivative approxima-

tions of selected bending moments with re-

spect to thickness design variable. Ramp load;

undamped beam; mode displacement method;

central difference operator.

re,,

sec

0 dM 1/dh 5 1.29

[] dM 1/dh 5 1.58

lk dM3/dh 5 1.36

• dM4/dh 5 .56

• dM 5/dh 5 .47

I I I

10 20 30

Number of modes

Modal convergence of derivative approxima-

tions of selected bending moments with respect

to thickness design variable. Ramp load; un-

damped beam; RWL method; central difference

operator.

29



the thickness design variable where the analysis was
done with the RWL method. As in the studies dis-

cussed that used the mode displacement method,

the sensitivities were calculated by the central dif-
ference operator with the basis vectors updated for

the perturbed design. Convergence of dM5/dh 5 is
somewhat improved compared with the mode dis-

placement case. Other quantities show convergence
similar to the mode displacement case; none of these

convergence histories can be described as good. Con-

vergence of the shear force derivative approximations

with the RWL method is considerably worse than for

the bending moments.
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The semianalytical methods have also been used

for calculating sensitivities of stress resultants. Fig-
ure 5.36 shows the convergence of bending moment

derivative approximations with respect to the mass

design variable calculated with the fixed-mode, semi-

analytical method and RWL vectors. The conver-

gence is very similar, especially for larger numbers
of modes, to that of the central difference method.

The mode acceleration, semianalytical method, and

the semianalytical method with approximate d'_/dx
were also tried. Again, the modal convergence curves

had the same jaggedness as for previous cases.

Considering these difficulties with modal conver-

gence for the ramp-loaded cases, especially poor

convergence would be expected for the step-loaded

case. For the ramp-loaded case, the convergence

of displacement derivative approximations with re-

spect to the mass design variable was reasonably
good (fig. 5.31). For the step-loaded case, the modal

convergence of the same displacement sensitivities is

poor as shown in figure 5.37. The modal convergence
of higher order sensitivities (velocities, accelerations,

and stresses) is extremely poor.

Adding damping slightly improved the modal con-

vergence of the response quantities but did not com-

pletely alleviate the convergence problem. The re-

sult for sensitivities is similar. Figure 5.38 shows the

convergence of velocity sensitivities for the discretely

damped case. The convergence is slightly improved

over the undamped case shown in figure 5.32, but the

curves are still fairly jagged. Convergence of sensi-

tivities for the case with modal damping is also very
similar to that in the undamped case.
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5.1.2.4. Mesh convergence of sensitivities. Just

as for the response quantities, additional insight can
be obtained by considering the convergence of their

sensitivities with increasing number of elements per
bay. The case of the stress resultants will be con-

sidered, since they were shown to converge well with

mesh refinement (fig. 5.26) but poorly as a function
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of number of vibration modes used in the analysis.

Figure 5.39 shows the convergence of derivative ap-

proximations of shear force with respect to the mass

design variable as a flmction of number of elements

per bay. Surprisingly, the convergence is extremely

poor.

5.1.2.5. Fixed versus updated modes in sensitivity
calculations. As mentioned, the computational cost

of updating the vibration modes for the perturbed

analyses is substantial. The question of whether

the modes from an initial design can be used in a

finite-difference-based procedure to calculate sensi-
tivities of the transient behavior has received consid-

erable attention in the literature. In reference 35, it
was shown that there is a substantial difference in

the derivatives of aircraft flutter speeds when fixed

modes are used rather than the updated modes. In
reference 33, however, there was little difference in

the derivatives of damping ratios for the five-span

beam when either fixed or updated modes were used.

This was investigated here with the same five-span,

undamped beam under the step load. As shown in

figure 5.37 where the derivative approximations were

calculated with the semianalytical, mode accelera-

tion method, convergence with respect to the number
of modes is very slow. Figure 5.40 sho_s the modal

convergence of derivative approximations of selected
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displacements with respect to h5 calculated with for-

ward difference procedures. Results with both fixed

and updated vibration modes are shown. Again, the

convergence as a function of number of modes is poor.

However, for all three derivative approximations, the

results are nearly the sanle for both the fixed mode

and updated mode eases.

5.2. Composite Delta Wing Example

The second example considered is an aircraft delta

wing with laminated composite cover skins taken
from reference 36 and described in detail in refer-

ence 37. The finite element model of this structure

is shown in figure 5.41. Since the wing is geomet-
rically symmetric about the nfidplane through its

thickness (X-Y plane), only the upper half of the

wing is modeled, and boundary conditions enforcing

antisymmetric motion are imposed on the joints ly-

ing in the X-Y plane. The wing is also cantilevered

at the root. The model contains a total of 88 joints

with a total of 140 unconstrained degrees of freedom.

The webs in the wing are made of titanium and are

modeled with 70 shear panel finite elements along
with rod elements through the thickness of the wing.
The cover skins are made of a moderate-modulus
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Modal convergence of derivative, approxima-

tions of selected displacements with respect to

mass design variable calculated with both fixed

and updated vibration modes. Step load; un-

damped beam; forward difference methods.

(El = 21 x 106 psi), graphite-epoxy material with

0 °, ±45 °, and 90 ° lamina where the 0 ° material runs

spanwise along the wing. These cover skills are mod-

eled with membrane finite elements; thus, only the

total thicknesses (and not the stacking sequence of

plies) of each lamina are important. The structural

mass is 6003 lb, but most of the wing mass is due to

a fuel mass of 93650 lb distributed over the joints.

The spatial distribution of the load is the same as the

static load from reference 37 and is roughly equiv-

alent to a 144-psf pressure load on the wing skin.

A step loading function was used as the time func-

tion for all cases. The lowest 10 vibration frequen-

cies for the wing are shown in table 5.3. Damping

is accounted for by assuming 0.5 percent of critical

damping for all modes.

Table 5.3. Lowest I0 Vibration I_¥equencies

for Delta "_Ving

Mode Frequency,

1 2.055

2 2.765

3 4.104

4 4.913

5 5,920

6 6.944

7 7,451

8 8.421

9 9.583

l{I 9.880

Uz

Figure 5.41.

32

88 joints

140 unconstrained degrees
ff freedom

Finite element model of composite delta wing.

5.2.1. Wing Dynamic Response

The character of the dynamic response of the

delta wing is considerably different than that of the

five-span bean1. Shown in figure 5.42 is a time history

of acceleration at the wingtip. Although 64 modes

were included in the analysis, it is evident from

figure 5.42 that only the low-frequency modes are

being excited. The same is true for stresses as shown

in the time history of figure 5.43. Shown in figure 5.43

is %6 which is a typical shear stress in a web. As can

be seen, there is a small amount of higher frequency

response superimposed on the predominant response

frequency. However, the time history exhibits none of

the high-frequency response present in the five-span

beam.

In contra_st to the five-span beam example, the

modal convergence of all response quantities consid-

ered for the delta wing is quite good. Shown in fig-

ures 5.44 and 5.45 are modal convergence plots for

selected accelerations and stresses at critical points
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Time history of shear stress in web in region 6

for delta wing.

calculated with the mode displacement method. A

converged solution is reached with approximately

20 or less modes for all the response quantities

shown. Convergence is also good for response quan-
tities when the mode acceleration or RWL methods

are used instead of the mode displacement method.
Shown in figure 5.46 is a convergence plot for the

same stresses shown in figure 5.45 but calculated with
RWL vectors.

5.2.2. Sensitivities of Wing Dynamie Response

5.2.2. I. Design variables. The design variable
definitions are the same as those in reference 37 and

are shown in figure 5.47. As can be seen in figure 5.47,

the skin is broken up into 16 regions. In each region

there arc three design variables-- the thickness of the
0° lamina, the thickness of the 90 ° lamina, and the

thickness of the =t=45° lamina. These design variables

will be denoted t_ where i denotes the region of the
wing skin, and 0 is either 0 °, 90 °, or 45 ° depending

on the lamina orientation. Also shown in figure 5.47

are the 12 design variables controll!ng the thickness
of the webs. These will be denoted t_, where i denotes

the particular web region.
In calculating sensitivities of various response

quantities, only a small subset of these design vari-
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u tip' 0
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Figure 5.44. Modal convergence of tip accelerations for delta
wing.

ables were considered. Specifically, derivatives of se-

lected displacement, velocity, acceleration, and stress

quantities were calculated with respect to t g, t9013,t_6

tl,_, t6u, and ,1o_ll! '

5.2.2.2. Effect of finite difference step ,size. Com-
pared with the five-span beam example, the system

matrices for the delta wing are larger and have a more

complicated connectivity. Since many of the signif-

icant operations in the transient response analysis

operate directly on these matrices, there is consider-

able potential for accumulating round-off error. This

round-off error along with the truncation error in the

finite difference expressions is a concern in selecting

a step size for a finite difference approximation to a
derivative.

A study was performed to consider the effect of

step size in the forward difference and central differ-

ence methods for the delta wing. Figure 5.48 shows

derivative approximations of the wingtip acceleration

at critical points with respect, to selected thickness

design variables as a function of the finite difference
step size used. As seen in the figure, the step size was

varied by factors of 10 from 10 .7 to 10 -2. The cen-
tral difference method was not used with the 10 -2

step size because the backward perturbation from

the nominal design would result in negative mem-

ber thickness. One significant observation is that the

acceptable step size range for the forward difference

method is small approximately 2 decades. A sec-
ond observation is that; the behavior of the central

difference method as a flmction of step size is surpris-

ingly good. It is expected that, for larger step sizes
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Figure 5.47. Design variable definitions for delta wing

example.
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• &7/dt J06 0.22 Central difference

• d[i/dt _6 1.94 Central difference

• duTdt 16 .51 Central difference
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A dff/dt 16 .51 Forward difference

2 x 105

L - ---- --

du'tip

in../sec 2
in.

7"
..... .t ...... J ...... ,J . , ,..,.I ..... _-I

0 10 6 10 -5 10 -4 10 -3 10 -2

Step size, in.

Figure 5.48. Effect of finite difference step size on accu-

racy of tip displacement derivative approxima-

tions calculated with forward and central dif-

ference methods with fixed modes. Delta wing

example.
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(10-3), the central difference method results in less
error than the forward difference method. The unex-

pected superior performance of the central difference
method for the smaller step sizes is probably due to

the symmetry of the difference operator. The round-
off errors that occur with the positive and negative

perturbations tend to cancel each other and thus pro-

duce the better than expected accurate values for the
sensitivities.

The situation is similar for selected stress sensitiv-

ities shown in figure 5.49. Most of the curves for the

forward difference case have a small acceptable step

size range. This is especially obvious for the deriva-
tive 1_ 16 -5 •da45/dt90 where 10 is the apparent choice for
step size. It should also be mentioned that these cal-

culations were performed by using 64-bit arithmetic.

In the five-span beam example, the effect of step size

on displacement derivatives was not as severe even

though, for one case, these were calculated with pre-
dominantly 32-bit arithmetic (fig. 5.30).

t[,°

sec Method
16 13

• dcti5/dt 96 2.65 Central difference

• dglo6/dt [6 .24 Central difference
16 16

• d_3,5/dtgo 2.65 Central difference
16 13

0 d_5 �dr 96 2.65 Forward difference

[] d_16/d t _6 .24 Forward difference
16 16

A d_5/dt 9o 2.65 Forward difference

4 x 10 6

' l

lb/in2_ ii

-310-7 10-6 10-5 10 -4 10-3 10-2

Step size, in.

Figure 5.49. Effect of finite difference step size on accuracy

of stress derivative approximations calculated
with forward and central difference methods

with fixed modes. Delta wing example.

The simple approach of selecting a single step size

for use with all response quantities and all design
variables was used here. This approdch has the

obvious advantage of simplicity but very questionable

validity for the forward difference method and this

delta wing example. From figure 5.49, there is
signifcant error in 16 16da45/dtgo if greater than 10 -4 is

used as the step size. However, if less than 10 -5 is

used instead, d_tip/dt 16 is in error.

As noted the central difference method improves

the range of acceptable step sizes but at the cost

of an additional analysis for each design variable.

Alternatively, the semianalytical method is partic-

ularly attractive for this delta wing example. TILe
stiffness matrices of the membrane and shear panel
finite elements are linear functions of the thickness

design variables. Thus, large values of the step size
can be used to effectively eliminate the round-off

errors in generating the derivative approximations

of the stiffness and mass matrices required for the

semianalytieal method.

5.2. 2.3. Modal converqence of sensitivities. Unlike

the five-span beam example, the modal convergence
of the displacement, velocity, and acceleration deriva-

tives for the delta wing example is good. As an exam-

ple, consider the reference ease of acceleration sensi-
tivities calculated with the central difference method

with updated modes shown in figure 5.50. For all

derivative approximations, convergence is achieved

with 32 or less modes. Modal convergence for accel-

eration sensitivities is equally good when the simple
forward difference method with fixed modes is used

as shown in figure 5.51. Figure 5.52 shows the conver-

gence of acceleration sensitivities calculated with the

semianalytical method with RWL vectors instead of

vibration modes. Convergence is also good although

slightly poorer than when modes are used. For ex-

ample, approximately 40 RWL vectors are required

for a converged value of d_tip/dt 16 compared with
approximately 32 vibration mode shapes.

The modal convergence of stress derivatives, how-
ever, depends dramatically on whether fixed or

updated modes are used in the calculation. The refer-

ence case with the central difference operator uses up-

dated modes, and as shown in figure 5.53, the modal

convergence for all stress sensitivities is very good.

Also the convergence of the stress sensitivities with

the forward difference operator with updated modes

as shown in figure 5.54 is very good with 24 or less

modes yielding a converged solution. However, when

the forward difference operator with fixed modes is
used the modal convergence of the stress sensitivi-

ties is very poor as shown in figure 5.55. For one

derivative approximation, 16 6der45/dtw, the convergence
is fairly good with approximately 24 modes yield-

ing a converged solution. Especially' poor conver-
gence is observed for 16 16da 0 �dr 0 (derivative of stress
in the lamina with respect to its own thickness)
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where approximately 100 modes are required for

convergence.

Using the semianalyticat method with fixed

modes does not improve the modal convergence of

the stress sensitivities. Figure 5.56 shows the modal

convergence of the same stress sensitivities as in the

previous figures but calculated with the semianalyti-

cal method with RWL vectors. The convergence be-

havior for each derivative approximation here is very

similar to that for the forward difference method with

fixed modes.

However, when the basis vectors are assumed

to vary with the design variables and the modified

modal method (see section 4.2.2) is used to approx-

imate d@/dx, the results are significantly improved.

Figure 5.57 shows the modal convergence of the same

stress derivative approximations as shown in pre-

vious figures. Here, the convergence is good with

only around 24 modes required for convergence of

the stress sensitivities.

It was mentioned in chapter 4 that the modal

method for approximating d@/dx produces no im-

provement in the values of transient response sen-

sitivities. This implies that including the modes

in the modified modal method (see eq. (4.10))

may also not significantly improve the transient re-

sponse sensitivities. This implication was tested

by studying the modal convergence of the stress

2 x 105
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• 6 .5l
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Figure 5.52.

I
150

Modal convergence of tip acceleration sensitiv-

ities for delta wing calculated with semianalyt-

ical method with RWL vectors.
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Figure 5.57.

sensitivities with the use of the modified modal

method but approximating dcb/dx with only the

pseudostatic term in equation (4.10). These results

are shown in figure 5.58. Comparing this figure with

figure 5.57 shows that for more than eight modes

the results are nearly identical. It appears that a

cheap, effective approximation to dO/dx in the semi-

analytical formulation can be obtained with only the

pseudostatic term from the modified modal method.

For the five-span beam example, the convergence

of the stresses was substantially improved by includ-

ing the static solution via either the mode accelera-

tion method, the static mode method, or the RWL

method. The RWL method is attractive because it is

cheaper to calculate nr RWL vectors than nr vibra-

tion mode shapes. However, incorporating the modi-

fied modal method in the sensitivity calculations with

RWL vectors would seem to be impossible because

it is derived to calculate the derivatives of vibration

eigenvectors. (See eq. (4.10).) Regardless, it seems

like a worthwhile numerical experiment to try using

RWL vectors along with the pseudostatic correction

term from the modified modal method in the variable

mode, semianalytical formulation. One legitimate ar-

gument for doing this is the welt-known observation
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that the basis spanned by the RWL vectors is an ex-

cellent approximation to the basis spanned by the

eigenvectors. The results of this experiment for the

modal convergence of the stresses in the delta wing

are shown in fgure 5.59. The convergence here is

quite good also. For small numbers of modes the

convergence is a bit erratic but in all cases the re-

sults are good for more than 32 modes. The benefit

of combining the RWL vectors with the pseudostatic

approxinmtion to d@/dx is that the RWL vectors

add the often important static displacement compo-

nent to the basis, whereas the pseudostatic term adds

components reflecting the change in the design vari-

able to the basis.

As mentioned, the benefit of the mode accelera-

tion method is that it also includes this pseudostatic

term. The semianalytical, mode acceleration, sensi-

tivity method described in chapter 4 was also applied

to this delta wing example. Again, the modal conver-

gence of the stress sensitivities shown in the previous

figures is considered. Figure 5.60 shows the excel-

lent convergence of the stress sensitivities. Clearly,

the mode acceleration method provides the same im-

provement in stress sensitivities as the semianalyti-

cal method with a modified modal approximation to

d@/dx.
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5.3. Stepped Cantilever Beam Example

The third example considered is a cantilever beam

with five different rectangular cross sections along the

length. (See fig. 5.61.) This example is taken from

reference 38 where its minimum mass design under

a static tip load was considered. The thickness and

width of the beam cross section in each of the five

sections are given in the table insert on figure 5.61

and represent an optimized design from reference 38.

The beam is 200 in. long and, ill the nominal case, .

each of the five sections has the same length. The

material properties for the beam are also shown in

figure 5.61.

/

(i) @ ® ® ®

Section (_) (_) 0 @ (_

Thickness, in. 23.5 22.0 20.0 18.0 16.5

Width, in. 1.20 1.10 1.00 0.90 0.85

Load history Material properties:

_, rad 21"55h E=30x 1061b/in 2
0

sec2 _21.55 [ L--] P =0.3 lb/in 3
I I

0 .18 Length = 200 in.
f, sec

Figure 5.61. Stepped cantilever Imam with applied rota-

tional acceleration at root.

In most of the analyses, the beam is modeled with

three finite elements per section. The transverse

displacement and rotation are tile nodal unknowns

resulting in a total of 30 degrees of freedom for this

case. The effect of different numbers of elements per

section on the lowest 10 beam natural frequencies

(with the beam clamped at the root) is shown in ta-

ble 5.4. In the transient response analyses 0.5 per-

cent of critical damping is included for each mode.

5.3.1. Loading

The loading for this stepped beam example is sig-

nificantly different than for the first two examples.

First, the load results from prescribing the accelera-

tion at the beam root rather than by applying a force

to the beam, and second, the time history as shown

in figure 5.61 is more complicated than the simple

step and ramp histories in the previous examples.

The objective of this particular loading condition is

to simulate the rotation of an appendage attached
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Table 5.4. Lowest Frequencies for Stepped Cantilever Beam

Frequency, Hz, for

3 elements 4 elements 5 elements 6 elementsMode

1 22.67

2 102.67

3 249.72

4 440.57

5 652.50

6 878.48

7 1093.36

8 1296.61

9 1479.81

10 1641.44

22.67

102.66

249.62

440.04

650.82

874.48

1086.15

1285.63

1465.74

1625.75

22.67

102.66

249.80

439.80

650.04

872.58

1082.61

1279.94

1457.74

1615.41

22.67

102.65

249.55

439.67

649.62

871.54

1080.64

1276.72

1453.09

1609.19

to a relatively large mass (e.g., robotic arm). The

acceleration history in figure 5.61 rotates the root of

the beam through 10 ° in 0.18 sec. After 0.18 sec,

the beam root is motionless while other points in the
beam are undergoing dynamic motion. Beam dis-

placements, velocities, and accelerations in the fol-

lowing sections are with respect to the rotating coor-

dinate system.

This type of applied acceleration can be handled

as an equivalent external force given as

p= -Mrg(t) (5.1)

where r is a vector describing the linear rigid body

rotation of the beam about its root and 9(t) is the
prescribed acceleration history given in figure 5.61.

It should be noted that the applied force in this case

depends on the system mass matrix; this must be

considered in the sensitivity calculations.

5.3.2. Stepped Beam Dynamic Response

The transient behavior of the beam is strongly

affected by the period of the loading. From table 5.4,

the period of the lowest vibration mode is 0.044 sec,

whereas the period of the square-wave loading is

0.18 sec. From figure 5.62, it can be seen that in the

time history of the beam tip displacement, this first

mode predominates, and almost exactly four cycles

occur during the period of the loading. After the

load is removed, the displacement response at the

tip is relatively small. The bending stress at the
root h_ a time history similar to that of the tip

displacement as can be seen in figure 5.63 but with

slightly more participation from higher frequency

modes. As expected, the acceleration time history

for the tip as shown in figure 5.64 is considerably

_ more jagged; this indicates the participation of many

higher frequency modes. This behavior is largely due

to the abrupt changes in loading in the square-wave

input. Significant accelerations exist at the tip after
the loading is removed.
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5. 3. 2.1. Modal convergence. The first convergence

study considered the effect of the number of finite

elements per section on the convergence of the critical

point displacements, velocities, and accelerations at

the beam tip and stresses at the root. For all these

quantities, the convergence is excellent. For example,

the peak acceleration changes by less than 1 percent

when the number of finite elements per section is

varied from 3 to 8. Then, for the beam modeled

with three elements per section, the effect of the

number of modes used in the analysis was considered.

Generally the convergence was better than expected.

Figure 5.65 shows the modal convergence of the

tip acceleration at two different critical time points
calculated with the mode displacement method. The

values are essentially converged with five modes.

u tip,
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Figure 5.65.
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The modal convergence of the stress at the beam

root is also rapid. Figure 5.66 shows the convergence

of the root stress at two critical points calculated
with the mode displacement method. No more than

five modes are required for convergence. It was
mentioned that there is a strong static component

in the beam response during the period while the

load is applied. Usually this requires the use of
the mode acceleration method or RWL vectors for

acceptable convergence of the stresses, t_vidently the

lowest vibration mode is close enough to the static

displacement shape for this cantilever beam that the

mode displacement method gives good values for the
stresses.

5.3.2.2. Use of RWL vectors in analysis. In

the stepped beam and delta wing examples, the con-

vergence with RWL vectors in analysis and sensitiv-

ity calculations was generally as good or better than

with vibration modes. The modal convergence in the

stepped cantilever beam example when RWL vectors

are used is very good also as seen in figure 5.67 for
accelerations.

As can be seen in figure 5.67, the largest number

of RWL vectors used in the analysis is 20. In

the convergence studies considering vibration modes

(e.g., fig. 5.65), the full set of 30 modes was used. A

complete set of RWL vectors could not be generated

for this example because of ill-conditioning inherent

in the numerical process (eqs. (2.26) through (2.29)).
As additional RWL vectors are generated, round-
off errors cause the vectors to become less and less

orthogonal. Eventually, the vectors become linearly

dependent; this results in a singular reduced system.

In most practical applications of this RWL method,

this singularity problem would not occur because the

number of RWL vectors generated would be much

smaller than the total number of degrees of freedom.

5.3.3. Sensitivities of Stepped Beam Dynamic

Response

5.3.3.I. Design variables. Two different classes of

design variables are considered in this example. The
first class is the set of beam thicknesses in each of

the five sections. They are denoted hi, where i is the
section number from figure 5.61. These are similar to

thickness design variables considered in the five-span

beam and delta wing examples. Sensitivity results

are presented in the next sections with hl and h5
considered from this set.

The second class of design variables is the set of
lengths of the five sections in the beam. The beam

length is fixed at 200 in.; thus, only four design vari-

ables determine the lengths of the five sections. The

four design variables are denoted li, where li is the
distance from the beam root to the end of the ith sec-

tion. Sensitivity results are presented in the next sec-

tions with ll and 14 considered from this set. In the

structural optimization field this type of design vari-

able is often referred to as a "shape" design variable

and is studied separately from member thickness-

type design variables. A recent study (ref. 39) con-

sidered the calculation of static response sensitivi-

ties with respect to shape design variables with the

semianalytical method. It was found that numeri-
cal difficulties in the semianalytical method resulted
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in very large errors in sensitivities. This difficulty is

addressed in sections 5.3.3.2 and 5.3.3.3 for the tran-

sient case.
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Figure 5.68.
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5.3.3.2. Effect of finite difference step size.

It is shown in this section that, practically, the

selection of finite difference step size is not a con-

cern for this stepped beam example. A series of

studies was performed to consider the effect of step

size on both thickness and length sensitivities calcu-

lated with finite difference and senfianalytieal meth-

ods. The finite element model with three elements

per section was used and all 30 modes were included.

Figure 5.68 presents approximate derivatives of tip

displacement with respect to section thicknesses cal-

culated with overall forward and central difference

methods. A key point to be made is that both meth-

ods give excellent results for approximately an 8-

decade step size range. For the large step size of

10 -1 in., the central difference operator generally

gives better results than the forward difference oper-

ator as would be expected. The results are nearly as

good for sensitivities of the root stress with respect

to the section thicknesses as shown in figure 5.69.



Compared with figure 5.68, there is slightly more er-

ror for the snmllest and largest step sizes but the

sensitivities are still accurate over a very broad range

of step sizes. If sensitivities of stresses with respect

to the length design variables are considered, the re-

sults are also very' good. Figure 5.70 shows sensitivi-
ties calculated with the forward and central difference

methods. Again there is a broad range of step sizes

that provide accurate sensitivities. For the smaller

step sizes the results are generally less accurate than

in figure 5.69 but for the 10 -2 step sizes they are
more accurate.
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Figure 5.69. Effect of finite difference step size on accu-

racy of root stress derivatives with respect

to thickness design variables for stepped can-
tilever beam. Forward and central difference

operators.

It has been mentioned that severe numerical diffi-

culties were uncovered in reference 39 when sensitiv-

ities of static response were calculated with respect

to shape design variables. The result of this numer-

ical ill-conditioning could be seen by calculating the
sensitivities with different finite difference step sizes

used for approximating the derivatives of the stiff-

ness matrix. For very small step sizes, the error in

the sensitivities is due to round-off. For the larger

step sizes, however, the errors in sensitivities were

much larger than those due to truncation of the fi-

nite difference operator and were found to be caused

by basic ill-conditioning in solving the semianalytical

equations.

This same phenomenon occurs when sensitivi-

ties are calculated with a semianalytieal method

for the transient case. Figure 5.71 shows approxi-

mate derivatives of root stress with respect to the

length design variables calculated with the forward

difference and semianalytical methods. Again, all

30 modes are used in the analyses. For the smaller

step sizes, the accuracy is significantly better for the

semianalytical method than for the overall forward
difference method. For the 10 -2 step size, how-

ever, the results from the forward difference method

are excellent, whereas several of the sensitivities cal-

culated with the semianalytical method exhibit ex-

tremely large errors. This result is completely con-

sistent with that in reference 39. Although in this
example, there is a large range of step sizes where ac-

curate sensitivities can be obtained, in general, this

would not be the case. Especially as the problem be-

comes larger it is desirable to use larger step sizes in a

semianalytical method, but this is severely restricted

for shape design variables by" the type of error shown

in figure 5.71.

5.3.3.3. Modal convergence of sensitivities. Most

of the sensitivities exhibit the same good modal con-

vergence as the response quantities. For example,

the modal convergence of approximate derivatives of

tip displacement with respect to hi and h5 at differ-

ent critical points is shown in figure 5.72. The sen-
sitivities were calculated with the central difference

method with updated modes and, as can be seen, the

convergence is excellent. The convergence of tip ac-

celeration derivative approximations is not as good

as the displacement derivative apt)roximations but is

still acceptable ms seen in figure 5.73. Again, these

sensitivities are with respect to hl and h5 and are
calculated with the central difference method with

updated modes.

Convergence is also good when sensitivities with

respect to the length design variables are considered.

Figure 5.74 shows the modal convergence of approxi-

mate derivatives of acceleration with respect to ll and

14 calculated with the central difl'erence method. A
step size of 10 -5 was used to avoid the problem shown

in figure 5.71. As can be seen in figure 5.74, conver-

gence is achieved with approximately 10 modes.

The modal convergence of stress sensitivities is

similar to that for the delta wing example. When

updated modes are used with an overall finite dif-
ference method, the convergence is excellent. An

example of this is shown in figure 5.75 where ap-
proximate derivatives of the root stress with respect

to hi and h5 calculated with the forward difference
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operator are shown. However, if fixed modes are used

in a finite difference procedure, the modal conver-

gence is much worse. Figure 5.76 shows an example

of this for the same sensitivities as in figure," 5.75.

Also, if sensitivities of the root stress with respect

to the length design variables (/1, 14) are considered,

the modal convergence is very poor. An example of

this poor convergence is shown in figure 5.77. The
convergence is similarly bad if the fixed-mode semi-

analytical method is used instead of a finite difference

method. Figure 5.78 shows the poor modal conver-

gence of the same sensitivities as figure 5.77 but cal-

culated with the fixed-mode, semianalytical method.

For the delta wing example, remedies for the
poor convergence of stress sensitivities in the semi-

analytical method were based on approximating the

mode shape derivatives d@/dx. These semianalyt-
ical methods including approximations for d@/dx

were also applied to this stepped beam exam-

ple. First d@/dx was approximated with the

modified modal method. The modal convergence
of the stress sensitivities is now excellent as can

be seen in figure 5.79. The degree of improve-

ment can best be appreciated by comparing fig-
ures 5.78 and 5.79 and noting that the range

of the ordinate in figure 5.78 is much broader

than in figure 5.79. Using only the first pseudo-

100
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static term from the modified modal method as an

approximation to d@/dx was also tried. As can

be seen in figure 5.80, the convergence is adequate

though not quite as good as when the complete mod-
ified modal method is used.

Just as in the delta wing example, a case was also
considered where RWL vectors were used instead of

vibration modes but their derivatives were computed

by the modified modal method (version with pseudo-

static term plus modes). Again, somewhat surpris-
ingly, the modal convergence of the stress sensitivities

is good as seen in figure 5.81.

The semianalytical mode acceleration method

was also tried as a remedy for the poor convergence

of the stress sensitivities. Again, the very poor con-

vergence is eliminated as can be seen in figure 5.82.

5.4. Summary

A number of different methods for calculating sen-

sitivities of transient response quantities have been

exercised on three example problems: a five-span

beam, a composite aircraft wing, and a variable-
cross-section beam. Two of the methods are over-

all finite difference methods where the analysis is re-

peated for perturbed designs. The other methods
are termed semianalytical methods because they in-

volve direct, analytical differentiation of the equa-

tions of motion with finite difference approximations
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of the coefficient matrices. All the methods use basis

vectors to reduce the dimensionality of the problem.

Accordingly, the convergence of both the transient

response quantities and their sensitivities as a func-

tion of number of basis vectors was a key concern in

this chapter.

In the delta wing and stepped cantilever beam

examples, the convergence of the response quanti-
ties was consistently very good. However, this was

not true with the five-span beam. With the five-

span beam under a concentrated end moment and

ramp time history, the convergence of displacements

and velocities was adequate. However, the conver-

gence of accelerations was poor. The convergence

of stress resultants for this example depended on

how they were calculated. When the mode displace-

ment method was used, the convergence was quite
poor. However, when the mode acceleration method,

the Ritz-Wilson-Lanczos vector method, or the static

mode method was used, the convergence was good.

In cases where convergence was poor for the five-span

beam, the addition of modal or discrete damping im-

proved the convergence somewhat. However, it did

not eliminate the convergence problems.

The modal convergence of the sensitivities in the

three examples is consistent with the convergence of
the response quantities themselves. For the delta
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wing and stepped cantilever beam examples, the

convergence of sensitivities was generally good. For

the five-span beam example, the convergence of dis-

placement sensitivities was adequate but the conver-

gence of velocities, accelerations, and stress resul-

tants was generally poor. This poor convergence was

observed for all the sensitivity calculation methods.

Furthermore, it appears to be associated with the

structure and loading because no improvement was

observed as the number of finite elements per span
was increased.

In certain cases poor convergence of sensitivities

was also observed for the delta wing and stepped can-

tilever beam examples. When sensitivities of stresses
were calculated with the fixed-mode overall finite

difference methods or the fixed-mode semianalytical

methods, the convergence was very poor. In large
problems, however, updating the vibration modes in

the overall finite difference methods or rigorously cal-

culating derivatives of the mode shapes is very ex-

pensive. The mode acceleration version of the semi-

analytical method and the semianalytical method
with mode shapes approximated with the modified

modal method were devised to alleviate this poor

convergence with lower computational cost. When

both methods are applied to delta wing and stepped

cantilever beam examples, the modal convergence of
sensitivities is excellent.

All the sensitivity calculation methods considered
herein rely on finite difference operators. Thus step

size selection is an important concern. The sys-
tem stiffness and mass matrices are linear functions

of many of the design variables in the three exam-

pie problems. This allowed large step sizes to be

used in the semianalytical methods to minimize the

round-off errors and produce accurate derivatives of
the stiffness and mass matrices. Also there is less

opportunity for round-off error in calculating finite
difference derivatives of just the coefficient matrices

compared with finite difference derivatives of the

overall response quantities. For these reasons, the

semianalytical methods were consistently less sensi-

tive to finite difference step size than the overall finite
difference methods.
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Chapter 6

Computational Costs

A considerationof thecomputationalcostsises-
sentialfor evaluatinganynumericalmethod.This is
especiallydifficultin large-scale,finite-element-based
proceduresbecausethereisoftenconsiderable"over-
head"requiredin thepracticalimplementationof a
givennumericalmethod.Forexample,mostfiniteel-
ementcodesrequireonlyasmallportionofa system
matrix to beresidentin centralmemoryduringfac-
torizationat anygiventime. Theotherportionsof
the matrixarereadfromdiskandthefactoredpor-
tionsarewrittento diskasrequired.A similarsitua-
tioncanexistonvirtualmemorymachineswherethe
diskoperationsaretransparentto the implementor.
In thesecases,thecomputerresourcesrequiredare
veryimplementationdependent.

Anapproachthat iscommonin theformalstudy
of numericalmethodsis to evaluatethe computa-

tional cost by counting the number of floating point

operations. There are some pitfalls to this approach.

Sometimes, even for large problems, because of the

required overhead it is impossible to achieve a prac-

tical implementation that will execute as fast as the

predictions from the operation count. At other times,

especially on vector machines, it is possible for a

method with a higher operation count to be faster

than a method with a lower operation count.

Nevertheless, this approach is used here, primar-
ily to indicate the major trends in the costs of the

methods, not to make fine distinctions between them.

Following common practice, a floating point opera-

tion (or "flop") is defined as the combination of a

floating point multiply, add, and associated array in-

dexing. In the rest of this chapter a floating point

operation is often referred to simply as an operation.

6.1. Costs of Basic Matrix Manipulations

Multiplication of full matrices occurs in several

places in the transient response and sensitivity meth-

ods. The approximate number of floating point op-

erations required to multiply a full I × m matrix and

a m × n matrix is given as

Cfmul = 1m n (6.1)

Solution of the reduced eigenproblem (eqs. (2.23))

is important in solving the system eigenproblem with

subspace iteration (eqs. (2.3)) and in uncoupling the

reduced system when basis vectors other than the

eigenvectors are used. In both cases, it is necessary

to solve a full, generalized eigenproblem for all ttr

eigenvalues and eigenvectors. Since eigenvalue solu-

tion techniques are inherently iterative, the number

of operations required for a converged solution can

only be estimated. Reference 15 estimates the num-

ber of operations for the complete solution of a gen-

eralized eigenproblem with the Jacobi method as

Creig _- 18n 3 + 36_ 2 (6.2)

Other techniques for solving this eigenproblem may

have a significantly different cost. However, it is

shown that the cost of this eigensolution is small

relative to other tasks in the sensitivity calculations.

6.2. Costs of System Matrix Manipulations

For the purpose of considering the computational

costs of operations on system matrices (e.g., K,

M), these matrices are considered to be stored in

a banded form. In a banded form, only matrix ele-

ments located near the diagonal are stored; the ma-
trix elements outside this "bandwidth" of the matrix

are zero and are not stored or considered in oper-
ations. Finite element problems yielding a stiffness

matrix with a constant bandwidth are rarely encoun-
tered in practice so most finite element codes use

more sophisticated and efficient schemes for storing

system matrices. However, having a single, easily

understood number to characterize the sparsity of

a system matrix (the bandwidth) is convenient in

approximating computational costs. Although few

finite element problems have precisely a constant
bandwidth, this assumption is accurate enough in

many cases to get reasonable estimates for a relative

number of operations in a numerical procedure.

From reference 40 the cost in number of opera-

tions of factoring a banded system matrix of order

ng is given as

33 32 2__ (6.3)Cbfac= 3(_+3)n_ 3 - 3

where _ is one half the bandwidth (excluding the

diagonal). Also from reference 40, the cost of a

single solution of a banded system, given the factored

matrix, is given as

Cbsol = 2(_ + 1)rig--_(_ + 1) (6.4)
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Thecostof multiplyinga bandedsystemmatrixand
a singlevectoris givenas

Cbmul= + 1)n (6.5)

6.3. Cost of Basis Reduction

The process of reducing the degrees of freedom

from ng to nr requires the matrix triple product oly
erations shown in equations (2.6), (2.7), and (2.8).
Since this process is used in all the sensitivity meth-

ods, the cost is considered separately here. In per-

forming this operation, nr system vectors are multi-

plied by a system matrix. Then rtr(nr 4- 1)/2 inner

products (for a symmetric system matrix) between

system vectors are performed. The total number of

required floating point operations is

n 9 nr(nr + 1) (6.6)
Fred = nrCbmul + 2

6.4. Cost of System Eigensolution

The cost of solving the generalized vibration

eigenvalue problem is even more difficult to estimate
than the cost of solving the reduced eigenproblem.

The numerical techniques vary widely among differ-

ent analysis codes. Furthermore, a technique used

for one problem might be totally inappropriate when

applied to a different problem. Nevertheless, some

assumptions are made here that will hopefully lead

to a reasonable estimate of computational costs for a

fairly broad class of problems.

First, it is assumed that the eigenvalue problem

is solved with a subspace iteration technique with

shifts (for example, ref. 15). In recent years, software

based on this approach has become common. Also,

the eigensolver, E4, in the EAL software used in this

study (ref. 23) is based on this approach. It is also

necessary to make assumptions about the number of
vectors used in the subspace and the number of itera-

tions at a given shift point required to converge some

subset of these vectors to eigenvectors. The follow-

ing numbers were used for these quantities with the

realization that they may be optimum for only a few

problems. Also, it is assumed that the eigensolution

is being performed for a slightly perturbed model and

the eigenvectors from the initial model are available

as the initial subspace. At each shift point ntss= 16
vectors are included in the subspace. After nit = 2

iterations, ncss= 8 of these vectors have converged

to eigenvectors.

5O

The number of shifts or number of factorizations

required is approximately

_shift -- -t- 1 (6.7)
Tress

At each iteration, the inverse power operation re-

quires a matrix product between M and ntss vec-

tors followed by ntss solutions of the system equations
based on the current factored K. The basis reduction

operation for both K and M requires ntss(rtts s + 1)

system vector inner products. Next, the eigen-
problem of reduced order ntss must be solved. This

cost is given in equation (6.2) with nr replaced by

ntss. Finally, the updated set of approximate system

eigenvectors must be formed as a linear combination

of the current approximation. This requires nt2ss ng
operations. The approximate cost of solving the sys-

tem eigenproblem for n r modes and frequencies can
be written as

Ceig = _shiftCbfac -ff nshiftrtit [r_tssCbmul

+ ntssCbsot + ntss(ntss + 1)rig

+ 18&s+ 36ds. + Gs (6.8)

6.5. Cost of Generating RWL Vectors

As has been demonstrated, RWL vectors are an

attractive alternative to vibration mode shapes for

basis reduction in transient response analysis. It

has been mentioned previously that generation of the

RWL vectors is considerably cheaper than vibration

modes. An estimate of this cost in number of floating

point operations is derived here.

First, a factorization of the system K is required.

The system equations are solved n r times based on

the factored K. The generation of right-hand-side

vectors requires nr - 1 matrix products between M

and a vector. Another key step in the process is

the Gram-Schmidt orthogonalization as indicated in

equation (2.27). For all vectors, this requires nr - 1

multiplications of a vector by M and nr(nr - 1)/2

vector inner products. The scaling of each vector

requires nr vector inner products and nr divisions of
a system vector by a scalar. Writing the total number

of floating point operations in expanded form yields

CRW L = Cbfac + nrCbsol + 2(nr - 1)Cbmul

nr (nr - 1)
+ 2 ng + 2urn 9 (6.9)



6.6. Cost of Model Generation

The generation of the finite element model re-

quires processing of the input, forming elemental ma-

trices, and forming global system matrices. Most
of the sensitivity calculation methods require gen-

eration of a single perturbed model for each design

variable. The central difference method, however, re-

quires the generation of two perturbed models. Thus

to compare the central difference method with the

other methods, all estimate of the model generation

cost is required. This cost is difficult to calculate

in general. For the purposes herein this cost is es-

timated empirically with EAL by observing the exe-

cution time for model generation relative to matrix

multiplication for a number of models. From these

experiments it was observed that the predominant

element type in the model substantially affects the

cost. That is, forming the element matrices in a

model composed of three-dimensional solid elements
is much more costly than in a model composed of rod

elements. The estimate for model generation cost

used here,

Cmode 1 = lOOting (6.10)

roughly approximates the cost for a model with

two-dimensional, plate-type elements in EAL but

would be significantly in error for predominantly one-
dimensional or three-dimensional models.

6.7. Cost of Integration of Reduced System

The basic operation for integrating the reduced

system is shown in equation (2.30). The two ma-

trix multiplications shown in equation (2.30) are per-
formed at every time step. If equations (2.5) are cou-

pled, Wij and Nij are full and the explicit matrix
nmltiplication must be performed. In this case, the

total number of floating point operations for integra-

tion of the system is given as

Cinte = 8_'_2nt (6.11)

where nt is the number of time steps in the analy-

sis. If equations (2.5) are not coupled, Wij and Nij
are diagonal, and this fact can be exploited to sub-

stantially reduce the cost of integrating the system.

The number of floating point operations in this case

is given as

Cinte = 8nrnt (6.12)

When the number of equations in the reduced sys-

tem nr is large, the difference between Cinte in

equations (6.11) and (6.12) is very large. For the
comparisons of sensitivity methods in this chapter,

equation (6.12) is used to estimate the integration

cost. When vectors other than vibration modes are

used or vibration modes for an initial model are used

with a perturbed model, the equations are first un-

coupled by solving the reduced-order eigenproblem.

6.8. Cost of Back Transformation for

Physical Response Quantities

After the reduced equations have been solved, it

is necessary to recover the physical displacements,

velocities, accelerations, and stresses (or stress resul-

tants) of interest.. Usually the quantities of interest

are only a subset, of all possible quantities available
from the finite element model. In the critical point

constraint formulation described in chapter 3 it is

necessary to recover the physical response quantities

only at the critical times. That is, the back trans-

formation is performed at only 5 to 20 critical points

rather than at thousands of time steps. The cost of

the basic back transformation operation is

Cback = npnr nc (6.13)

where np is the nnmber of physical quantities being
recovered from the modal values and nc is the number

of critical points. The costs of back transformation

in the specific sensitMty methods will be expressed

as a multiple of this basic cost.

6.9. Cost of Sensitivity Calculation
Methods

Because all the sensitivity calculation methods

require the dynamic analysis of the initial model, this

component of the cost can be neglected in comparing
the different methods. In addition, in all the methods

the basic operations are repeated for each design
variable so the costs estimated below are per design

variable. Also, to simplify the cost analysis, the

models are assumed to be undamped so that any

operations dealing with modal damping or system
damping matrices are not included.

6.9.1. Finite Difference Methods

Both forward and central difference methods for

calculating sensitivities were considered in chapter 4.

In the central difference method, the basic operations

of the forward difference method are performed twice;

therefore the cost is approximately twice that of the
forward difference method. Costs are derived here

for the forward difference method. In both finite

difference methods, the basis vectors can be the

same as for the original model (fixed) or recalculated

for the perturbed model (updated). The cost with

updated modes presented herein is based on using

51



naturalvibration modes. An alternativeof using
RWLvectorsisconsideredseparately.

Thefirst stepin theforwarddifferencemethodis
evaluationof theperturbedmodel.If themodesare
beingupdated,the eigenproblemis solved.Other-
wise,theoriginalmodesareusedto reducethebasis,
andthereduced-ordereigenproblemissolvedto un-
couplethetransientequations.Theuncoupledequa-
tions for the perturbedsystemare then integrated
andthe npphysicalquantitiescalculatedat the ne
critical time points. The cost of the actual difference

operation is very small and is therefore neglected.

For the fixed-mode case, the total cost is

Cfdfix = Cmodel + 2Cred + Creig + n2rng

+ Cinte + Cback (6.14)

For the updated mode case the total cost is

Cfdup d =- Cmode 1 + Ceig -t- Cinte + Cback (6.15)

6.9.2. Semianalytical Method With Fixed Modes

The semianalytical method begins by evaluating

the perturbed model. Then dM/dx and dK/dx are
formed using a forward difference operator. Each

derivative requires about /3n 9 operations, Then
the basis reduction operation is applied to both

derivative matrices. Formation of the right-hand-

side pseudo load (eqs. (4.6)) is a fairly costly op-

eration and the two matrix products (dM/dx)_i and
(dK/dx)q require about nr2 nt operations each. Fi-

nally, the uncoupled equations are integrated and

the physical sensitivities recovered. For the purposes

of cost estimation, a single quantity np is used as
the total number of required physical sensitivities.

In the semianalytical methods however, the specific

procedure for recovering the sensitivities depends on

whether the quantity is a displacement, velocity, ac-
celeration, or stress sensitivity. In estimating the

costs of this back transformation operation these dif-

ferences are ignored. One justification for this ap-

proach is that the cost of back transformation is usu-

ally small relative to other costs in the sensitivity

calculation. In this fixed-mode, semianalytical

method, approximately the same number of opera-

tions is required for the recovery of physical sensitiv-
ities as in the finite difference methods. The total

number of floating point operations can be written
a8

Csafix -- Cmode I + 2tOng + 2Cre d + 2n2rnt

+ Cinte + Cback (6.16)

6.9.3. Semianalytical Method With Approximate

dO /dx

Just as in the fixed-mode, semianalytical method,

evaluating the perturbed model and forming dM/dx

and dK/dx is the first step. The next step is using

the modified modal method to approximate d,_/dx.
The procedure for the modified modal method is

given in equations (4.9), (4.10), (4.11), and (4.12).
The calculation of the nr pseudostatic contributions

requires the formation of nr right-hand-side vectors

and rtr solutions of the system equations. Tile forma-

tion of the Ajk participation factors requires approx-
imately nr system matrix additions plus the equiv-

alent of a triple product basis reduction operation.

Forming the linear combination of pseudostatic term

and eigenvectors requires nrn 9 operations. The total
cost in number of floating point operations for the
modified modal method is

Cmmo d = 2urn 9 + nrCbsol + rifting

+ Cre d + nrn 9 (6.17)

Given dO/dx, the derivativcs of the reduced sys-

tem matrices can be formed. For both dM/dx and
dK/dx, two triple product, basis reductions plus

nr vector inner products (for the dOT/dxMO term

since M¢ is already available) are required as shown
in equation (4.8). The right-hand-side formation and

integration of the reduced sensitivity equations are

identical to the fixed-mode semianalytical method.

Because of the nonzero dO/dx, recovery of the physi-

cal sensitivities is more complicated than in the fixed-

mode case. Approximately twice the number of op-
erations is required in the back transformation since

both _ and d@/dx terms must be considered as
shown in equations (4.13). The total cost for the

variable-mode semianalytical method is

Csaup d = Cmode I + 2/3rig + Cmmod + 4Cre d + 2nrng

+ 2n2rnt + Cinte + 2Cback (6.18)

6.9.4. Semianalytical Mode Acceleration Method

Since d_/dx and dq/dz are obtained from the

fixed-mode semianalytical method, the operations in

equation (6.16) (except Cback ) are required in apply-
ing the mode acceleration method. The back trans-

formation operations for displacement and stress

sensitivities are more complicated as seen in equa-

tions (4.19) and (4.20). The cost of forming the co-

efficients in equations (4.19) is dominated by multi-

plying a vector by a system matrix, adding nr + 1
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systemvectorsandsolvingthesystemequationsfor
nr + 1 pseudostatic vectors. Again, the assumption
is made that the model is undamped so that the C

and the dC/dx terms in equations (4.19) are zero.

The back transformation procedure for displace-
ment and stress sensitivities involves application of

equations (4.19) and (4.20) for each quantity at
the critical times. Velocity and acceleration terms
are calculated as in the fixed mode, semianalytical

method. Again, with only a single quantity for the

number of back transformed quantities np, the cost

can only be roughly estimated as 4Cback. The to-

tal cost for the semianalytical, mode acceleration
method can then then be written as

Csamacc = Cmodel + 2flng + 2ere d -t- 2n2rnt

+ CUmul+ (_T + 1)ng + (_T + 1)Cbso_

-+- Cinte -1- 4Cback (6.19)

6.10. Analysis of Cost For Various Models

With the expressions for computational cost in

the previous sections, it is now possible to evaluate

the use of the sensitivity calculation methods on var-

ious examples. The first three examples are those

considered in chapter 5. These three examples, how-

ever, are all rather small compared with the class

of problems envisioned for the production use of the

sensitivity methods. Accordingly, two other hypo-

thetical problems with a larger number of degrees of
freedom have been included.

The key parameters from the five problems re-

quired for the cost analysis are shown in table 6.1.

Several points should be made about these parame-
ters. The two beam problems have a small number

of degrees of freedom and a very small bandwidth
and, as a result, a small cost for system matrix fac-
torization. This is unusual in finite element anal-

ysis. Medium model A and large model B repre-

sent a typical medium size linear dynamics problem

and a rather large ambitious problem, respectively.
Medium model A also is complicated by the fact

that 100 vectors are assumed to be required in the

transient analysis. In all five examples, a relatively

large number of time steps are used in the transient

analysis.

6.10. I. Cost of Computational Subtasks

Table 6.2 shows the number of floating point op-

erations required for different computational tasks

for the five example problems. Examining the costs

for these subtasks gives some clues to the costs of dif-

ferent sensitivity calculation methods. For the first

three examples, the cost of system matrix factoriza-

tion is low. For the two larger hypothetical examples

the factorization cost is much higher relative to that

of other tasks. In the first three examples, the cost of

integrating the reduced equations is substantial even
though the equations are uncoupled. For models A

and B, the integration cost is 1 to 2 orders of mag-
nitude less than the other subtask costs in table 6.2.

Consistently, in all five examples, the cost of perform-

ing the triple product basis reduction is high. For the

three small problems, this cost is significantly higher
than the factorization cost. For medium model A,

this cost is also much higher than the factorization

cost, but this is primarily due to the requirement of

100 vectors in the reduced system. Even in model B,

however, the basis reduction cost is only a little less
than one half the factorization cost. One conclusion

is that the number of vectors in tile reduced system

substantially affects the cost of the analysis even if
the vectors are not updated for the current model.

Table 6.1. Parameters Governing Computational Costs

Model

Five-span beam

Delta wing

Stepped beam

Medium model A

Large model B

n 9 _ nr nt np nc

32 3 18 6000 25 I0

264 30 20 30000 13 5

32 3 20 30 000 4 5

3000 100 100 10000 50 10

12 000 300 30 20000 200 l0

The use of RWL vectors in the transient and sen-

sitivity analyses was considered in chapter 5. Here,

the cost of generating RWL vectors compared with
vibration modes is considered. Table 6.2 shows the

cost of system matrix eigensolution Ceig and RWL

vector generation CRW L for the five example prob-

lems. In every case the generation of RWL vectors is

cheaper than the eigensolution. In the beam exam-

ples, CRVCL is more than an order of magnitude less

than Ceig. This results from the unusual situation in
which the number of required eigenvectors is nearly

the same as the total number of degrees of freedom.

In this case, the solution of the reduced eigenproblem

artificially raises the cost of the system eigensolution.

The other three examples show Ceig to be three or
four times CRW L. This is probably a much more ac-
curate estimate of the cost savings obtained by using

RWL vectors instead of eigenvectors.
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Table 6.2. Number of Operations for Selected

Computational Subta_sks

Model Cbfac Cre d Ceig CRW L Cinte

Five-span beam 2.7 x 1029.5 x 103 6.6 x 105 1.8 x 104 8.6 × 105

Delta wing 1.2 x 1{}5 3.8 x 105 4.8 x 106 1.1 x l06 4.8 x l06

Stepped beam 2.7x 102 1.1 x 104 6.6x 105 2.1 x 104 4.8x l06

Medium model A 1.5 x 107 7.5 x l07 7.4 x 1{}8 2.1 x 108 8.0 × 106

Large model B 5.4 x l08 !2.2 x l08 4.0 x 109 1.2 x 109 4.8 x l06

6.10.2. Comparison of Costs for Five Sensitivity
Methods

The primary objective of this chapter is to com-

pare the costs in number of floating point operations

of the sensitivity methods. This is summarized for
five sensitivity methods, for the five examples in ta-

ble 6.3. It is believed that these five sensitivity meth-

ods are all practical alternatives for large-order prob-

lems. This belief is substantiated by the fact that for

all five examples the difference among the five costs
is less than 1 order of magnitude.

Table 6.3, Overall Operation Costs for Five Sensitivity Methods

Model Cfdfix Cfdupd Csafix Csaup d Cs .......

Five-span beam 1.0 x 106 1.5 x 106 4.8 x 106 4.8 x 106i4.8 x 106

Delta wing 6,5 x 10 B 1.0 x 1(}7 3.0 x 107 3.2 x 107 3,1 x 107

Stepped beam 5.0 x 106 5,5 x 106 2,9 x 107 2,9 x 107 2.9 x 107

Medium model A 2.4 x 108 7,8 x 108 3.9 x 108 6,8 x 108 i4.5 x 108

Large model B 8.2 × 108 4.4 x 109 8.5 x 108 1.7 x 109 1.1 x 109

The forward difference method with fixed modes

is consistently the cheapest method. However, this

low computational cost must be weighted against
the pitfalls of the method discussed in chapter 5.
The cost of a fixed-mode central difference method

which is approximately twice the forward difference

cost would also be quite competitive with the other

methods and would lessen the sensitivity to finite

difference step size. For the two larger problems,

the forward difference method with updated modes

is relatively expensive and an updated-mode central

difference method would be extremely expensive for
larger problems.

In the three smaller problems the semianalytical

methods require significantly more operations than

the finite difference methods. This is primarily be-
cause the larger number of time steps makes the

calculation of the right-hand-side pseudo load rela-

tively large. For the two larger problems, however,
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the fixed-mode semianalytical method is quite com-

petitive with the forward difference method. For

model A, it is less than twice the cost of the finite

difference method, and for model B, it is essentially
the same.

The number of basis vectors used is a key pa-

rameter in both the analysis and sensitivity calcu-
lations. Table 6.1 shows the number of modes used

in the baseline cost analyses for the five examples.
Here, the effect of the number of modes on the over-

all sensitivity costs is considered. First, the delta

wing example, which is representative of a typical

small problem, is considered. Shown in figure 6.1 is
the cost for the five methods plotted as a function
of number of modes used. The number of modes

ranges from 20 to 100. The values of the other pa-

rameters in the problem are in table 6.1. The key

result from figure 6.1 is that the semianalytical meth-

ods are much more costly than the finite difference

methods for large numbers of modes. There are two

reasons for this: first, because the problem is small,

calculation of the vii;ration modes is relatively cheap,
and second, because there are a large number of time

steps, formation of the right-hand side in the sensitiv-

ity equations for the semianalytical methods is quite

costly when the number of modes used is large.

For the large model B example, the result of vary-

ing the number of modes is very different. For this

example, the cost of the five sensitivity methods plot-
ted as a function of number of modes is shown in fig-

ure 6.2. In this example, the calculation of the modes

is a very costly operation. Accordingly, the forward

difference method with updated modes is substan-

tially more costly than the other methods for large
numbers of modes. The fixed-mode forward differ-

ence and semianalytical methods show only moderate
increases in cost as the number of modes is increased.

It was mentioned above that a relatively large

number of time steps are used in the five examples.
The effect of the number of time steps on the overall

sensitivity calculation costs is considered here. The

delta wing example is considered as representative

of a small problem; the large model B example, of a
large problem. For the delta wing, the computational

costs for the five sensitivity methods are plotted as

a function of the number of time steps in figure 6.3.

The values of the sensitivity calculation costs here

are similar to those in figure 6.1; the forward differ-

ence methods show only moderate cost increases for

larger numbers of time steps and the semianalytical

methods show substantial cost increases. Again, the

reason is that the right-hand-side formation in the

semianatytical methods is a substantial part of the
total cost in small problems.
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The cost results from a large problem,the
modelB example,areverydifferent,however.The
costasa functionof numberof timestepsis plot-
ted in figure6.4. Obviously,thereis practicallyno
changeincostforanyof themethodsasaflmctionof
numberof timesteps.For this largeproblem,both
thecostof integratingtile uncoupledequationsand
the costof formingthe right-handsidein the semi-
analyticalmethodsare2 to 3 ordersof magnitude
lessthan thetotalcost.

6.11. Summary

The main objective of this chapter is a compari-

son of the computational costs in number of floating

point operations of the sensitivity calculation meth-

ods. Five example problems were considered -the
three example problems from chapter 5, which are all

fairly small and two larger hypothetical examples.

Many of the results depend significantly on
whether the problem is one of the three smaller ex-

amples or one of the two larger hypothetical exam-

ples. In the three smaller examples, the cost of sys-

tem matrix factorization is low, whereas in the larger
problems, this cost is quite high. When the cost of

factorization is high, the system eigenproblem is es-

pecially costly. In the smaller problems, operations

repeated for the reduced problem at each time step

(such as integration of the uncoupled equations) are

a significant percentage of the total sensitivity calcu-

lation cost. For large problems, tile relative cost of

these operations is small.

For all five examples, the forward difference

method with fixed modes was the cheapest. For
tile smaller problems the forward difference method

with updated modes had a relatively low cost, but

for the larger problems the cost was quite high. For

the larger problems the semianalytical method with

fixed modes and the semianalytical mode accelera-

tion method have costs that are relatively competi-
tive with the fixed-mode forward difference method.

In all cases, the semianalytical method with approx-

imate eigenvector derivatives was one of the more
costly methods.

It was shown in chapter 5 that for two exam-

pies the accuracy of the stress sensitivities for small
numbers of basis vectors was extremely poor. It was

demonstrated that the semianalytical mode accelera-

tion method was one means of dramatically improv-

ing this accuracy. From the results of this chapter,

the semianalytical mode acceleration method is only

slightly more costly than the fixed-mode forward dif-

ference and semianalytical methods. Given the un-

acceptable accuracy of these fixed-mode methods for
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two of the examples, the semianalytical mode accel-
eration method appears to be the method of choice.



Chapter 7

Concluding Remarks

Several methods have been developed and eval-

uated for calculating sensitivities of displacements,

velocities, accelerations, and stresses in linear, struc-

tural, transient response problems. Two of the meth-
ods are overall finite difference methods where the

analysis is repeated for perturbed designs. The other

methods are termed semianalytical methods because

they involve direct analytical differentiation of the

equations of motion with finite difference approxima-
tions of the coefficient matrices. The different, sen-

sitivity methods were evaluated by applying them

to three example problems: a five-span simply sup-
ported beam loaded with an end moment, an aircraft

wing loaded with a distributed pressure, and a can-

tilever beam with a stepped cross section loaded with
an applied root angular acceleration.

An important issue in calculating transient re-

sponse sensitivities for use in formal optimization

procedures is how to define the constraints. Two

common approaches are to integrate the response

quantity over time or to pick tile maximum (or min-

inmm) value of the response quantity in time. Both

these approaches have drawbacks. An alternative

critical point constraint approach was implemented

which identifies the most important response points
along the time history. A method for identifying

these critical points was devised that, based on the

three examples considered, appears to be very effec-

tive even for very jagged response histories.

All the analyses and sensitivity methods consid-

ered use approximation vectors to reduce the number

of degrees of freedom in the analysis. Vibration mode

shapes, Ritz-Wilson-Lanezos vectors, and static dis-

placement shapes were used in the analysis and sen-

sitivity calculations. The key question when an ap-

proximate reduced basis is used in an analysis is how

many basis vectors are required for an accurate ap-
proximation to the finite element solution. It was

generally found that, if the accuracy of the response

quantities was poor, the accuracy of the sensitivities
was extremely poor. In a number of cases, however,

even though the accuracy of the response quantities

was adequate, the accuracy of sensitivities was poor.
This is discussed further below. In all cases consid-

ered herein, the accuracy as a function of the num-

ber of vectors for both the response quantities and
sensitivities with Ritz-Wilson-Lanczos vectors was as

good or better than with vibration modes. Since the
generation of ttitz-Wilson-Lanczos vectors is cheaper

than vibration modes, they appear to provide a more

cost-effective alternative to modes in many cases.

A goal in considering sensitivity methods in this

study is that they be suitable for very large-order fi-
nite element analysis. In these types of problems,

a complete vibration analysis for each perturbed
model is impractical because of the high comput.a-

tional cost.. To reduce this cost, one approach which
was studied herein is to use the basis vectors from

the initial model to approxinmte tile response in the

perturbed model. This often provides an effective so-
lution. In two of tile three examples problems eonsid-

ere& however, using the initial vectors in an overall

finite difference method or assuming fixed modes in

a semianalytical method resulted in very poor modal

convergence for stress sensitivities. Two methods

were devised to improve this poor performance.
Tile first method retains the derivatives of the

basis vectors in the sensitivity equations but approx-

imates these derivatives rather than using a very
costly exact, computation. One well-known method

for approximating eigenvector derivatives, the modal

method, was found to be completely ineffective be-

cause it adds no new information to the existing

modal basis. Another technique, the Inodified modal

method, adds a pseudostatic contribution to tile

eigenvectors in approximating the eigenvector deriva-

tives. This technique, along wit.h the semianalytical

method, was found to be very effective in improving

the poor accuracy of the stress sensitivities.

A second method for improving the accuracy of
the stress sensitivities as a function of the number of

modes is to use a mode acceleration version of the

semianalytieal method. The key to the mode accel-

eration method in the transient analysis is that it

supplements the modal basis with a static contribu-

tion calculated from the complete model, The key to
the mode acceleration implementation of the semi-

analytical sensitivity method is that it supplements

the modal basis with pseudostatic sensitivity terms

calculated from the complete model. This technique

produced the same dramatic improvement in the ac-

curacy of stress sensitivities as the semianalytical
modified modal method.

As mentioned, computational cost was an over-
riding concern in considering tile sensitivity analy-

sis methods. To estimate this cost, expressions for

the number of floating point operations in each of

the methods were derived. Although this approach

does not include important effects such as overhead
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operationsor disk input/output that would be
presentin apracticalimplementationof thesemeth-
ods, it doesprovidea mechanismfor an approxi-
matecoarserankingof the methodsby computa-
tionalcost. The overallforwarddifferencemethod
with fixedbasisvectorswasfoundto bethe cheap-
estmethodfor all casesconsidered.This technique,
however,suffersfrom the accuracyproblemsprevi-
ouslymentioned.Oneapproachto alleviatingthese
accuracyproblemsis to recalculatethe modesfor
theperturbedmodel(updatedmodes)in theoverall
forwarddifferencemethod.This forwarddifference
methodwith updatedmodeswasfoundto bevery
costly for largemodels,however.The fixed-mode
semianalyticalmethodis only slightly morecostly
thantheoverallforwarddifferencemethodwith fixed
modesbut suffersfromthe sameaccuracyproblem
asthefixed-modeoverallforwarddifferencemethod.
Twotechniqueswith reasonablecoststhat alleviate
the accuracyproblemarethemodeaccelerationim-
plementationof thesemianalyticalmethodandthe
semianalyticalmethodwithapproximatemodeshape
derivatives.Of thesetwomethods,thesemianalyti-
calmodeaccelerationmethodisslightlycheaper.

Given the high accuracyof the semianalytical
modeaccelerationmethodforarelativelysmallnum-
berof modesandits reasonablecomputationalcost,
thisappearsto bethemethodof choice.In thethree
examplesconsideredherein,thismethodconsistently
performedaswellasthemuchmorecostly,updated-
modeoverallfinitedifferencemethods.Furthermore,
the insensitivityof this andthe othersemianalyti-
calmethodsto finite differencestepsizemakesthis
semianalyticalmodeaccelerationmethodespecially
attractive.
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Appendix

Computer Implementation

Themethodsfor calculatingsensitivitiesandtheexampleproblemshavebeenimplemented
with thegeneralpurposefiniteelementcode, EAL (ref. 23). EAL includes general language

constructs for controlling execution flow as well as general and specific utilities for manipulating

data stored as named entities in a data base. It also allows procedures (called "runstreams")

to be defined and then explicitly executed. Most of the implementation was done with EAL

runstreams. However, some parts of the implementation could not be conveniently done with
runstreams and were coded as Fortran additions to EAL. The Fortran additions are described

in the next section. Tile runstreams for tile algorithms and example problems are included and
described also.

Additions to EAL

The transient response module in EAL version 312 solves the uncoupled form of equa-

tions (2.5) with the matrix series expansion method. A modification was made to allow equa-

tions (2.5) to be fully coupled. In the scmianalytical method, the right-hand-side pseudo loading

of equations (4.6) can be easily formed with EAL. However, a slight modification to the tran-

sient response module was required to permit solution of equations (4,6) with this general form

of loading. In addition, a special purpose module was added to EAL to perform the task of

identifying the critical points on each response function.

Runstream for Stepped Beam Example Problem

The runstream for the stepped beam is included to illustrate how the sensitivity calculation

runstreams are used. At the beginning of the runstream, the data set XFLG ADS indicates which

subset of the possible design variables will be considered in the sensitivity analysis. The data

sets X ADS and XNAME ADS contain the initial values and the register names of all the design

variables, respectively. Various parameters controlling the analysis and sensitivity calculations

are definedin runstream data setsTR PARAMETERS, DXDV PARAMETERS, and BACK METHOD. The

runstream data set MODEL defines the model in terms of the design variables in X ADS, It is called

before the initial dynamic analysis and at least once for each design variable considered in the

sensitivity analysis. The runstream data set DYNAM SOLN is called once to perform the dynamic

analysis of the initial model. The runstream data set PLOT RESP illustrates the interface to a

useful utility runstream TR PLOT for automatically generating plots of response quantities as a

function of time. TR PLOT is called once for each class (e.g., accelerations) of response quantity

to be plotted. The actual sensitivity analysis is performed by calling the runstream TR DXDV n

where the n is associated with the particular sensitivity calculation method.

*CM=120000

$ ......................................................................

$ RUNSTREAM FOR STEPPED BEAM EXAMPLE

$ ......................................................................

*XQT EXTE

! SYST = SSP(4,5) $ GET SYSTEM TYPE

*XQT U1

59



*INF=7

*CLIB=29

"*(ALL) ALL

*XqT AUS

TABLE(NI=I,NJ=9,TYPE=O) : XFLG ADS

J=l:l

J=5 : 1

J=6 : i

J=9 : I

*XQT U1

*TI(X ADS)

23.5

22.0

20.0

18.0

16.5

$
40.0

80.0

120.0

160.0

*TI(XNAME ADS)

HI : H2 : H3 : H4 : H5

XLI : XL2 : XL3 : XL4

*(TR,PARAMETERS)

QLIB=I

MNAME=CEM

NMODES=5

DT=I.OE-5

T2 = .5

DRFORMAT=DIAG

METHOD=MODES

DXDV=O

EIGEN=I

PRINT=I

VLIB=I

NCRIT=5

CONV=I.E-10

BLKSIZE=2000

NTERMS=50

*(DXDV,PARAMETERS)

FDCH=I.OE-5

FDMCH=I.0E-6

DXMD=FIXED

*TI(BACK METHOD)

2 $ DISP

1 $ VELOCITIES

1 $ ACCELERATIONS

1 $ REACTIONS

2 $ STRESSES

(MODEL) END

LEN=200.

NEPS = 3

NEL = NEPS*5

NNDDE = NEL + 1

*XQT AUS

TABLE(NI=I,NJ=5) : XXI

I=I : J=1,5 : O. "XLI" "XL2" "XL3" "XL4"

TABLE(NI=I,NJ=5) : XX2

1=1 : J=1,5 : "XLt" "XL2" "KL3" "XL4" "tEN"

D1 = SUM(XX2 -I.0 XXI)

! RNEP _ I.O/NEPS

DELX = UNION("RNEP" D1)

*XQT TAB

START "NNODE" 1 3 4 5

JLOC
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$I O. O. O. 200. O. O. "NNODE"

' J = 1 : ! X = 0.0

! II = 1 : ! NI = 5

*LABEL 5

! DELX = DS,I,"II",I(I DELX AUS i I)

! I2 = I : ! N2 = NEPS

*LABEL 8

"J" "X" 0.0 0.0

! J = J + 1 : ! X = X + DELX

*JGZ,-I (N2,8)

! II = II + i

*JGZ,-I(NI,5)

"NNOD ....LEN" O. O.

CON 1

ZERO 1,2,6 : 1

MATC

I 30.+6 .3 .3

BA

RECT I 1.20 "Bl"

RECT 2 i.i0 "H2"

RECT 3 1.00 "H3"

RECT 4 .90 "H4"

RECT 5 .85 "H5"

RECT 6 1.0 20.0

MREF

11211.0

*XQT ELD

E21

! N=5

! I= I

! NI = 1

*LABEL 20

NSECT = "I"

N2 =NI + I

"NI" "N2" 1 "NEPS"

N1 = NI + NEPS

I = I + I

*JGZ,-I(N,20)

*XQT E

RESET G=386.

*XQT EKS

*XQT TAN

*XQT K

*XQT M

RESET G=386.

*XqT AUS

R = RIGID(1)

DEFINE R6 = R AUS 1 1 6,6

APPL FORC = PROD(-I.O CEM R6)

*END

* (DYNAM, SOLN) END

*DCALL (TR,VECTORS)

*XQT U1

*TI (SEL DISP)

"NNODE" 2

*TI (SEL VELO)

"NNODE" 2

*TI (SEL ACCE)

"NNODE" 2

*TI (SEL STRE)

E21 1 i SZI I 0

*XQT AUS

$ DEFINE SOME MODAL DAMPING

TABLE(NI=I,NJ="NMODES '') : DRAT

I=I : J=I,"NMODES" : .005

*DCALL(SQUARE LOAD) RTIME=.I8 RANG=IO.O

61



*DCALL(TR,MAIN)

END

*(SQUARE,LOAD) END

*XQT AUS

RT2 = RTIME/2.0

EPS = 0.0

RT2M = RT2 - EPS

RT2P = RT2 + EPS

RTM = RTIME - EPS

D2R = 3.1415926/180.

RRAD = RANG*D2R

AMP = 4.0*RRAD/RTIME/RTIME

MAMP = -AMP

TABLE(NJ=6) : TIME

J=1,6 : O. "RT2M" "RT2P" "RTM" "RTIME" i0000.0

TABLE(N J=5) : CA

J=1,6 : "AMP" "AMP" "MAMP ....MAMP" 0.0 0.0

*END

*(PLOT RESP) END

*XQT DCU

CHANGE I A AUS MASK MASK HIST CA i I

*XQT AUS

ALPHA : FTITLE

i' HISTORY OF FORCE MULTIPLIER G(T)

ALPHA : DTITLE

i' TIP DISPLACEMENT HISTORY FOR CANTILEVER BEAM

ALPHA : TVTITLE

I' TIP VELOCITY HISTORY FOR CANTILEVER BEAM

ALPHA : TATITLE

I' TIP ACCELERATION HISTORY FOR CANTILEVER BEAM

ALPHA : STITLE

I' BENDING STRESS AT THE ROOT FOR THE CANTILEVER BEAM

! TLIB = 15

*XQT U1

*(TRPLOT OPTIONS)

! YNAME = 'CA

! TITLE = 'FTITLE

ID = 1

*DCALL(TR,PLOT)

*XQT U1

*(TRPLOT OPTIONS)

YNAME = 'DISP

IDJK = 'DISP

TITLE = 'DTITLE

ID = "NMODES"

*DCALL(TR,PLOT)

*XqT U1

*(TRPLOT OPTIONS)

! YNAME = 'VELO

! IDJK = 'VELO

! TITLE = 'TVTITLE

! ID = "NMODES"

*DCALL(TR,PLOT)

*XQT UI

*(TRPLOT OPTIONS)

YNAME = 'ACCE

IDJK = 'ACCE

TITLE = 'TATITLE

ID = "NMODES"

*DCALL(TR,PLOT)

*XQT U1

*(TRPLOT OPTIONS)

YNAME = 'STRE

IDQ = 'STRE

TITLE = 'STITLE

ID = "NMODES"
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*DCALL(TR,PLOT)

*END

*RGI

*DCALL(TR,PARAMETERS)

*DCALL(SENS,DVUP)

*DCALL(MODEL)

*DCALL(DYNAM,SOLN)

$*DCALL(PLOT,RESP)

*IF("DXDV" NE 0): *DCALL(TR,DXDV,"DXDV")

*ALL

*IF("SYST" EQ CDC ): *PRT(ALL)

*IF("SYST" EQ CNVX): *PRT(ALL)

*DCALL(ALL)

*XQT EXIT

Runstreams for Sensitivity Methods

Runstream TR MAIN

TR MAIN is the main runstream for performing the transient response analysis and is based

on a similar runstream produced by EISI. It is used only for the transient analysis of the initial

model and not for the sensitivity calculations.

$ (TR MAIN) - MAIN DRIVER FOR TRANSIENT RESPONSE ANALYSIS

$ .................................................................

* XQT U1

* REGISTER STORE(29 TR REGISTERS I i)

* REGISTER RETR (29 TR REGISTERS I I)

* RGI

$ DEFAULT REGISTERS:

QLIB = 2 $ SOURCE FOR EXCITATION, DESTINATION LIB FOR RESPONSE

VLIB = I $ SOURCE LIB FOR VIBR MODE AND VIBR EVAL DATASETS

VSET = i $ USE "VLIB" VIBE MODE "VSET" "VCON" FOR THE RITZ

VCON = I $ FUNCTIONS

KNAME = K $ STIFFNESS MATRIX

MNAME = DEM $ MASS MATRIX

DAMP = DAMP $ NAME OF SPAR FORMAT DAMPING MATRIX

FSET = I $ EXCITATION SET NUMBER

NAME = AUS $ 2ND WORD OF TIME "NAME" AND CA "NAME"

DT = O. $ SET TIME INCREMENT

T2 = O. $ FINAL INTEGRATION TIME

DRFORM= DIAG $ FORMAT FOR THE REDUCED MATRICES (DIAG,FULL,RITZ)

DRMETH= 0 $ TIME INTEGRATION METHOD (O=MSE)

NTER = 50 $ SET NUMBER OF TERMS IN MATRIX SERIES EXPANSION

NMODES= 0 $ NUMBER OF MODES USED IN DYNAMIC ANALYSIS (DEFAULT=ALL)

BLKSIZ= 6000 $ BLOCK SIZE FOR OUTPUT DATASETS

EIGEN = 0 $ EIGENVALUE ANALYSIS OF DAMPED SYSTEM

PRINT = 0 $ PRINT FLAG FOR DTEX

OPT=O, PROC=MAIN, NERR=O

* DCALL,OPT (TR PARAMETERS)

! ZERO = SSP(O,IO)

*IF("NMODES" EQ 0): ! NMODE=TOC,NBLOCK("VLIB" VIBR MODE "VSET ....VCDN")

$
$ COMPUTE DATASETS REQUIRED FOR DR/DTEX, /TRI, AND /BACK:

$
* CALL (TR PREP)

$
$ COMPUTE THE MODAL RESPONSE:

$
* XQT DRX

* IF("DT" GT I.E-20): *GOTO 20

DTEX(INLI="QLIB",N2="NAME",OUTL="QLIB",EIGEN="EIGEN",>

PRINT="PRINT")

*GDTO 30
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*LABEL 20

DTEX (INLI="QLIB", N2="NAME" ,OUTL="QLIB", DT="DT", >

NTER=" NTER", E IGEN= "EIGEN", PRINT= "PRINT" )

*LABEL 30

TRI (INLIB="QLIB" ,N2="NAME '',CASE="FSET",ALIB="QLIB">

QXLIB=" QLIB", QX 1LIB="QLIB", QX2LIB=" QLIB", >

T2='T2", LB="BLKSIZ '')

$

!xIAT%: RANsF°P'_ATION:

NBCK = 5

TABLE(NI="NBCK", NJ=I, TYPE=4) : "QLIB" BACK LIST

J=1 : DISP VELO ACCE REAC STRE

$
EXIT

! I = I : ! N = NBCK

*LABEL 50

! BKMETR = DS,I,"I",I("QLIB" BACK METH i i)

! NM = DS,"I",I,I("QLIB" BACK LIST I I)

! IERR = TOC,IERR("QLIB" SEL "NM" MASK MASK)

*IF("IERR" EQ 0): *CALL (TR "NM" "BKMETH")

! I= I + 1

*JGZ,-I (N,50)

s
S EXIT:

* XQT U1

* REGISTER RETRIEVE(29 TR REGISTERS I I)

rEND

Runstream TR PREP

This Runstream TR PREP is used to define the reduced equations for the transient analysis

and also to prepare data for the back transformation phase. It is based on an EISI runstream

of the same name. It is used only for the transient analysis of the initial model and not in the

sensitivity calculations.

$ ................................................................

$ (TR PREP) - PREPARATION OF REQUIRED DATASETS

$ ................................................................

* XQTC U1

* RGI

PROC=PREP, NERR=O, MOTI=MOTI, FORC=FORC

$
$ CHECK FOR THE REQUIRED DATASETS AND DETERMINE THE TYPE OF EXCITATION:

$ !TYPE=0 FOR APPLIED FORCE. !TYPE=I FOR APPLIED DISPLACEMENT.

$
!TYPE=2

!IERR=TOC,IERR("QLIB" APPL FORC "FSET" MASK)

* IF("IERR" NE O): *GO TO IOO

!TYPE=O: !FNAME='FORC $$ APPLIED FORCE EXCITATION

* LABEL i00

!IERR=TOC,IERR("QLIB" APPL MOTI "FSET" MASK)

* IF("IERK" NE 0): *GO TO 200

* IF("TYPE" EQ 0): !NERR=I $$ FORCE & DISP SPECIFIED

!TYPE=l: !FNAME='MOTI $$ APPLIED DISPLACEMENT EXCITATION

* LABEL 200

* IF("TYPE" EQ 2):!NERR=2 $$ NO EXCITATION SPECIFIED

* IF("NERR" NE O):*CALL (TR ERROR)

!IERR=TOC,IERR("VLIB" VIBR MODE "VSET" "VCON"): !NERR=3

* IF("IERR" NE O):*CALL (TR ERROR)

!IERR=TOC,IERR("VLIB" VIBR EVAL "VSET" "VCON"): !NERR=4

* IF("IERR" NE O):*CALL (TR ERROR)

!IERR=TOC,IERR("QLIB" TIME "NAME" "FSET" MASK): !NERR=5

* IF("IERR" NE O):*CALL (TR ERROR)

$ NERR= 1

$ NERR=2

$ NERR=3

$ NERR=4

SNEP_=5
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!IERR=TOC,IERR("OLIB" CA "NAME" "FSET" MASK): !NEKR=6

* IF("IERR" NE O):*CALL (TR ERROR)

$

$ COMPUTE XTMX, XTKX, XTDX, & XTF FOR DR/DTEX & TRI:

$

!IERR=TOC,IERR(I INV "KNAME" "VCON" MASK)

* IF ("IERR" EQ O):*GO TO 250

* XQT DRSI

RESET K="KNAME",CON="VCON ''

* LABEL 250

$
*XQT AUS

$NERR=6

OUTLIB="QLIB": INLIB="QLIB"

DEFINE X="VLIB ''VIBR MODE "VSET" "VCON"

DEFINE E="VLIB" VIBR EVAL "VSET" "VCDN"

DEFINE F="OLIB ''APPL "FNAME" "FSET"

DEFINE K= 1 "KNAME"

DEFINE M= 1 "MNAME"

* IF("TYPE" EQ 0): *GO TO 300

KS=PROD("KNAME" -I. F): DEFINE F=KS

* LABEL 300

XTF "NAME" "FSET"= XTY(X,F)

$
! IDMD = TOC,IERR("VLIB" DRAT MASK MASK MASK)

*IF("IDMD" NE 0): *GOTO 400

DEFINE D = "VLIB" DRAT

OMEG = SQRT(E)

DMPD = PROD(2.0 D OMEG)

*LABEL 400

!IERR=TOC,IERR("QLIB ''XTMX "NAME" MASK MASK)

* IF("IERR" E0 0): *GO TO 500

$
*CALL(TR,REDM)

* LABEL 500

$
$ COMPUTE ("QLIB" STAT DISP "FSET" "VCON"):

$

!IERR=TDC,IERR("QLIB" STAT DISP "FSET ....VCON")

* IF("IERR" EQ 0): *GO TO 700

* XQT SSOL

RESET SET="FSET',CON="VCDN",QLIB="QLIB ''

* LABEL 700

$
*LABEL 1000

*END

Runstream TR DISP

The two TR DISP runstreams do the back transformation for displacements. TR DISP 1

performs the back transformation with the mode displacement method and TR DISP 2 uses

the mode acceleration method. This naming convention is used for the other runstreams

that perform the back transformation operation for other response quantities. The TR DISP

runstreams and companion runstreams for velocities, accelerations, and stresses perform the

back transformation at all time steps. Accordingly they are used only in the dynamic analysis

of the initial model and not in the sensitivity analysis.

_ ..................................................................

$ (TR DISP I) - BACK TRANSFORMATION FOR DISPLACEMENTS

$ MODE DISPLACEMENT METHOD

..................................................................

*XQTC AUS

UUTLIB="QLIB": INLIB="QLIB"

DEFINE IDJK = "QLIB" SEL DISP

DEFINE X = "FLIB" VIBR MODE "VSET" "VCON"
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THAT VMOD=SVTRAN(IDJK,X)

*XQT DRX

BACK(LRZ="BLKSIZE" )

T = +1.0 "QLIB" THAT VMOD : Y = "QLIB" QX

Z= "QLIB" HIST DISP

EXT = "GLIB" EXT DISP "FSET"

,END

..................................................................

$ (TR DISP 2) - BACK TRANSFORMATION FOR JOINT DISPLACEMENTS

$ MODE ACCELERATION METHOD

..................................................................

$
$ TRANSIENT RESPONSE: BACK TRANSFORMATION FOR JOINT DISPLACEMENTS

$ APPLICABLE FOR APPLIED FORCE OR DISPLACEMENT EXCITATION

$
$ REGISTERS: QLIB, NAME, FSET, VCON

$

, XQT AUS

! ID = TOC,IERR("QLIB" XTDX MASK MASK MASK)

OUTLIB="qLIB": INLIB="QLIB"

DEFINE E = "VLIB" VIBR EVAL

ROMG = RECIP(E)

DEFINE IDJK = "GLIB" SEL DISP

DEFINE XS = "GLIB" STAT DISP "FSET" "VCON"

DEFINE X = "VLIB" VIBR MODE 1 "VCON"

DEFINE DACC =TMAT DACC

XOME = CBD(X,RDMG)

THAT DACC = SVTRAN(IDJK,XOME)

THAT DS = SVTRAN(IDJK,XS)

*JNZ(ID,SO)

$ DAMPING TERM

! NJ = TOC,NJ("QLIB" XTDX MASK MASK MASK)

! NINJ = TOC,NINJ("QLIB" XTDX MASK MASK MASK)

*IF("NJ" NE "NINJ"): *GOTO I0

$ MODAL DAMPING

XOMD = CBD(XOHE,XTDX)

THAT DVEL = SVTRAN(IDJK,XOMD)

*GOTO 30

.LABEL i0

$ GENERAL DAMPING

THAT DVEL = RPROD(DACC,XTDX)

*LABEL 30

* XQT DRX

BACK(LRZ_"BLKSIZE")

T = +I. "GLIB" THAT DS : Y = "QLIB '_ A "NAME" "FSET"

*IF("ID" EQ 0): T=-I. "GLIB" THAT DVEL : Ys"QLIB" QXI "NAME" "FSET"

T = -I. "QLIB" THAT DACC : Y = "QLIB" QX2 "NAME" "FSET"

Z = "GLIB" HIST DISP "FSET"

EXT = "QLIB" EXT DISP "FSET"

*END

Runstream TR VELO

$ (TR VELO I) - BACK TRANSFORMATION FOR VELOCITIES

$ MODE DISPLACEMENT METHOD

..................................................................

*XOTC AUS

OUTLIB="GLIB": INLIB="QLIB"

DEFINE IDJK = "QLIB" SEL VELO

DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"

THAT VVEL=SVTRAN(IDJK,X)

• XQT DRX

BACK(LRZ_"BLKSIZE")

T _ +I.0 "QLIB" THAT VVEL : Y = "GLIB" QXI
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Z = "QLIB" HIST VELO

EXT = "QLIB" EXT

*END

Runstream TK ACCE

VELO "FSET"

$ (TR ACCE i) - BACK TRANSFORMATION F0R ACCELERATIONS

$ MODE DISPLACEMENT METHOD

..................................................................

*XQTC AUS

0UTLIB="QLIB": INLIB="OLIB"

DEFINE IDJK = "QLIB" SEL ACCE

DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"

TMAT VACC=SVTRAN(IDJK,X)

*XQT DRX

*END

BACK(LRZ="BLKSIZE")

T = +I.0 "0LIB" TMAT VACC : Y = "OLIB" 0X2

Z = "QLIB" HIST ACCE

EXT = "QLIB" EXT ACCE "FSET"

Runstream TR STRESS

$ ..................................................................

$ (TR STRESS i)

$ ..................................................................

$

$ MODE DISPLACEMENT STRESS BACK TRANSFORMATION

$

*XQT ES

RESET DPER=T

IDQ= "QLIB" SEL STRESS

U = "VLIB" VIBR MODEI "VCON" I,"NMODE"

T = "QLIB" TMAT VSTRE "FSET"

*XQT DRX

BACK(LRZ="BLKSIZE')

T = +i. "QLIB" TMAT VSTRE "FSET" : Y = "QLIB" QX "NAME" "FSET"

Z = "QLIB" HIST STRESS "FSET"

EXT = "QLIB" EXT STRESS "FSET"

*END

..................................................................

$ (TR STRESS 2)

..................................................................

$

$ TRANSIENT RESPONSE: BACK TRANSFORM F0R ELEMENT STRESSES

$ APPLICABLE FOR APPLIED FORCE OR DISPLACEMENT EXCITATION

$

$ REGISTERS: QLIB, NAME, FSET, VCON

$

* XQT AUS

! ID = TOC,IERR("QLIB" XTDX MASK MASK MASK)

OUTLIB="QLIB": INLIB="QLIB"

DEFINE E = "VLIB" VIBR EVAL

ROMG = RECIP(E)

DEFINE IDJK = "QLIB" SEL DISP

DEFINE XS = "QLIB" STAT DISP "FSET" "VCON"

DEFINE X = "VLIB" VIBR MODE 1 "VCON"

XOME = CBD(X,ROMG)

*JNZ(ID,30)

$ DAMPING TERM

! NJ = TOC,NJ("QLIB" XTDX MASK MASK MASK)

! NINJ = TOC,NINJ("QLIB" XTDX MASK MASK MASK)

*IF("NJ" NE "NINJ"): *GOTO iO

$ MODAL DAMPING
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XOMD = CBD(XOME,XTDX)

*GOTO 30

.LABEL 10

$ GENERAL DAMPING

XOMD-CBR (XOME, XTDX)

.LABEL 30

*SOT ES

RESET OPER=T

IDQ = "QLIB" SEL STRESS

U= "QLIB" STAT DISP "FSET" "VCON" " T = "QLIB" TMAT SF

*IF("ID" EQ 0): U= "QLIB" XOMD : T= "QLIB" TMAT SD

U= "QLIB" SOME : T= "QLIB" _AT SP

* SQT DRX

BACK (LRZ="BLKSI ZE")

T = +1. "QLIB" TMAT SF : Y = "QLIB" h "NAME" "FSET"

*IF("ID" EQ 0): T=-I. "QLIB" TMAT SD : Y = "QLIB" QXI "NAME ....FSET"

T = -i. "QLIB" TMAT SP : Y = "QLIB" QX2 "NAME ....FSET"

Z = "QLIB" HIST STRE "FSET"

EXT = "QLIB" EXT STRE "FSET"

wEND

Runstream TR ERROR

$ (TR ERROR)

$ ..................................................................

$
$ THIS PROCED_ PRINTS FATAL ERROR MESSAGES FOR THE TR PROCS.

$

* XQT U3

RP2: NUMBER OF FORMATS=IO

FOR_ I' (33HI*** TR FATAL ERROR: PROC, NERR= ,A4,1H, ,I4)

PRINT(1) "PROC" "NERR"

* GO TO "PROC"

$
* LABEL PREP

$
FORM I'(IOX,47H .BOTH (APPL FORC FSET ) AND (APPL MOTI FSET )/

' 10X,46HARE SPECIFIED IN QLIB , ONLY ONE IS PERMITTED)

FORM 2'(IOX,48HNEITHEI_ (APPL FORC FSET ) NOR (APPL MOTI FSET )/

' IOX,2OHIS PRESENT IN QLIB )

FORM 3'(IOX,47HVIBR MODE VSET VCON IS NOT PRESENT IN VLIB )

FORM 4'(IOX.47HVIBR EVAL VSET VCON IS NOT PRESENT IN VLIB )

FORM 5'(IOX,43HTIME NAME FSET IS NOT PRESENT IN QLIB )

FORM 6'(IOX,43HCA NAME FSET IS NOT PRESENT IN QLIB )

PRINT("NERR")

$
* GO TO FINIS

$
* LABEL FINIS

* XQT U1

* SHOW

* XQT DCU

TOC I: TOC "QLIB": TOC "VLIB"

* SOT EXIT

*END

Runstream TR RITZ

Runstream TR RITZ calculates RWL vectors following equations (2.25) through (2.29). Then

the reduced system is optionally uncoupled by solving the reduced-order eigenproblem. This

runstream is substantially based on one written at EISI.

..................................................................

$ (Ta RITZ)
$ ..................................................................
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* XQT U1

$

$$$ REGISTERS: MAXHZ, AFLIB, VLIB, MNAME, NMD, SCALE

$
* REGISTER STORE (29 REGISTER HOUSE 1 1)

* REGISTER RETR (29 REGISTER HBUSE 1 1)

!IERE=TOC IERR(1 INV K MASK MASK)

*ONLINE=O

* IF("IE/Ut" EQ 0): *GO TO 109

* XQT DRSI

* LABEL 109

* XQT SSOL

RESET QLIB="AFLIB"

* XQT AUS

OUTLIB=IO: INLIB=IO

DEFINE M=I "MNAME"

$

$ SCALE THE FIRST VECTOR

$

DEFINE X="AFLIB ''STAT DISP 1 MASK 1

MX=PROD(M,X)

XTMX=XTY(X,MX)

RECI=RECI(XTMX)

SCAL=SORT(RECI)

11 RITZ VECT=CBD(X,SCAL)

DEFI RITZ=If RITZ VECT

12 MX=PROD(M,RITZ)

!NSET=TOC NBLOCKS("AFLIB" STAT DISP I MASK)

!N=NSET-I: !NI=I : !N2=O

* IF ("N" EQ 0): *GO TO 104

$
$ M-BRTHUNOKMALIZE VECTORS 2 THROUGH NSET

LABEL I05

!NI=NI+I: !N2_N2+I

DEFI U="AFLIB" STAT DISP 1 MASK "NI"

DEFI MX=I2 MX MASK MASK MASK 1 "N2"

XTMU=XTY(MX,U)

DEFI X=ll RITZ VECT MASK MASK 1 "N2"

A=CBR(X,XTMU)

UI=SUM(U,-I. A)

MU=FROD(M,UI)

UTMU=XTYD(UI,MU)

RECI=RECI(UTMU)

SCAL=SQRT(RECI)

VECT=CBD(U1,SCAL)

11 RITZ VECT=UNION,U(VECT)

TEMP=FROD(M,VECT)

12 MX =UNION,U(TEMP)

* JGZ -1 (N 105)

* LABEL 104

* XQT DCU

ERASE lO

! NDO=NMD-NSET: !SET=NSET÷I: !SETÂ=NSET

* IF ("NDO" LE 0): *GO TO 1002

* XQT AUS

TABLE(NJ=I): 13 SCALE

J=l: "SCALE"

$
$ GENERATE REMAINING VECTORS ORTHONORMAL TD STATIC SOLUTION RITZ VECTORS

$

* LABEL I000

* XQT AUS

OUTLIB=IO: INLIB=IO

DEFINE M=l "MNAME"

DEFINE X=ll RITZ VECT MASK MASK "SETI"
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TEMP=PROD(M,X)

NORM=NORM(TEMP)

DEFI SCALE=t3 SCALE

APPL FORCICBD(NORM,SCALE)

• IF("SETI" EQ "NSET"): *GO TO 106

12 MX=UNION,U(TEMP)

• LABEL i06

• XQT SSOL

RESET QLIB=IO

• XQT AUS

OUTLIB=IO: INLIB=iO

DEFI U=STAT DISP

DEFI MX=I2 MX MASK MASK MASK i "SET1"

XTMU=XTY(MX,U)

DEFI X=ll RITZ VECT MASK MASK I "SETi"

A=CBR(X,XTMU)

UI=SUM(U,-I. A)

DEFI M=l "MNAME"

MU=PROD(M,UI)

UTMU_XTYD(UI,MU)

RECI=RECI(UTMU)

SCAL=SQRT(RECI)

VECT=CBD(UI,SCAL)

II RITZ VECT=UNION,U(VECT)

!SETI=SET: !SET=SET+I

• XQT DCU

ERASE 10

• JGZ,-I(NDO,IO00)

• LABEL 1002

• IF("DRFORMAT" EO DIAG): *GOTO 10020

• XQT AUS

DEFI X=II RITZ VECT

"VLIB" VIBR MODE I 1=UNION(X)

TABLE(NI=I,NJ="NMD") : VIBR EVAL

*RETURN

•LABEL 10020

• XQT AUS

OUTLIB=IO: INLIB=IO

DEFINE K=I K: DEFI M=I "MNAME"

DEFINE X=II RITZ VECT

IJCODE=IO000

!NMODE=NMD

KX=PROD(K,X): SYN K I0000 "NMODE" = XTYS(X,KX)

MX=PROD(M,X): SYN M I0000 "NMODE" = XTYS(X,MX)

! ZERO=NMDDE-I

• JZ (ZERO,IO03)

• XQT DCU

TOC I0

• XQT STRP

RESET SOURCE=tO, DEST=IO, FRQ2="MAXHZ"

• JGZ (ZERO,IO04)

• LABEL 1003

• XQT AUS

DUTLIB=IO: INLIB=IO

!K=DS 2 1 1(10 SYN K MASK MASK)

!M=DS 2 i I(I0 SYN M MASK MASK)

!EVAL-K/M

TABLE(NI=I,NJ=I): SYS EVEC: J=l: 1.0

TABLE(NI=I,NJ=I): SYS EVAL: J=l: "EVAL"

• LABEL 1004

• XQT AUS

OUTLIB=IO: INLIB=IO

DEFINE E=SYS EYEC

DEFI X=II RITZ VECT

X ORTR I I=CBR(X,E)

DEFINE X=X DRTB 1 1
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"VLIB" VIBR MODE I 1=UNION(X)

DEFINE E=SYS EVAL

"VLIB" VIBR EVAL I 1=UNION(E)

"VLIB" VIBR HZ 1 I=SQRT(.0253303 E)

*ONLINE=I

* XQT DCU

PRINT "VLIB" VIBR HZ i I

* XQT U1

* REGISTER KETR (29 REGISTER HOUSE I I)

wEND

Runstream TR REDM

TR REDM is a utility runstream for generating the reduced equations given a set of basis

vectors. Depending on the input register DRFORMAT the equations can be coupled or uncoupled.

If the equations are uncoupled, it is assumed that ¢I'TMcI ' is the identity matrix and _I'TKcI '

is a diagonal matrix with the eigenvalues along the diagonal.

$ (TR REDM) - FORM REDUCED K AND M MATRICES FOR TRANSIENT RESP.

$ ..............................................................

$
$ REGISTERS:

$ DRFO = 'FULL, 'RITZ, OR 'DIAG

$ NMODE = NUMBER OF MODES

$ MNAME = MASS MATRIX NAME

$ VLIB = LIBRARY FOR VIBRATIONAL MODES AND FREQS

$ QLIB = DESTINATION LIBRARY FOR MATRICES

$

*XQTC AUS

OUTLIB="QLIB"

DEFINE X = "VLIB" VIBR MODE I i I,"NMODES"

DEFINE E = "VLIB" VIBR EVAL I 1

DEFINE DAMP = I DAMP SPAR

DEFINE DMPD = i DMPD

! IDSP = TDC,IERR(I DAMP SPAR MASK MASK)

! IDMD = TOC,IERR(I DMPD MASK MASK MASK)

! DRFO

*IF("DRFO" NE FULL): *GOTD I00

$
$ FULL MATRICES, X IS A SET OF EIGENVECTORS

$
N = NMODES

!I=i

TABLE(NI="NMODES",NJ="NMODES") : XTMX

*LABEL 10

I="I" : J="l" : 1.0

{I=I+i

*JGZ,-I(N,IO)

! N = NMODES

'I=I

TABLE(NI="NMODES",NJ="NMODES '') : XTKX

*LABEL 20

! K = DS,"I",I,I("VLIB" VIBR EVAL I I)

I="I" : J="l" : "K"

!I=I+i

*JGZ,-I(N,20)

*IF("IDSP" NE 0): *GOTO 85

DUTL=22 : INLI=22

DX = PROD(DAMP,X)

"QLIB" XTDX = XTY(X,DX)

*LABEL 85

*IF("IDMD" NE 0): *RETURN

! N = NMODES : ! I = 1

*IF("IDSP" NE 0): TABLE(NI-"NMODES",NJ="NMODES") : "QLIB" XTDX
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*IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX

*LABEL 90

! D = DS,"I",I,I("VLIB" DMPD MASK MASK MASK)

I="I" : J="l" : "D"

!I=I+i

*JGZ,-I(N,90)

*RETURN

*LABEL I00

$
$ FULL REDUCED MATRICES (X NOT EIGENVECTORS)

$
*IF("DRFO" NE RITZ): *GOTO 200

OUTLIB=22 : INLIB=22

DEFINE K = I K SPAR

DEFINE M = 1 "MNAME"

KX = PROD(K,X)

MX = PROD(M,X)

"QLIB" XTKX = XTY(X,KX)

"QLIB" XTMX = XTY(X,MX)

*IF("IDSP" NE 0): *GOTO 130

OUTL=22 : INLI=22

DX = PROD(DAMP,X)

"QLIB" XTDX = XTY(X,DX)

*LABEL 130

*IF("IDMD" NE 0): *RETURN

! N = NMODES : ! I = 1

*IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES"

*IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX

*LABEL 140

! D = DS,"I",I,I("VLIB" DMPD MASK MASK MASK)

I="I" : J="l" : "D"

!I=I+i

*JGZ,-I(N,140)

*RETURN

*LABEL 200

$
$ SIMPLE DIAGONAL CASE (X EIGENVECTORS)

$
TABLE(NI=I,NJ="NMODES") : XTKX : TRAN(SOUR=E)

TABLE(NI=I,NJ="NMODES") : XTMX : J=I,"NMODES" 1.0

*IF("IDSP" NE 0): *GOTO 210

OUTL=22 : INLI=22

DX = PROD(DAMP,X)

"QLIB" XTDX = XTYD(X,DX)

*LABEL 210

*IF("IDMD" NE 0): *RETURN

i N = NMODES : ! I = 1

*IF("IDSP" NE 0): TABLE(NI=I,NJ="NMODES") : "QLIB" XTDX

*IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX

*LABEL 220

! D = DS,"I",I,I("VLIB" DMPD MASK MASK MASK)

I=1 : J="l" : "D"

!I=I+l

*JGZ,-I(N,220)

*RETURN

*END

Runstream TR PLOT

: "QLIB" XTDX

TR PLOT is a utility runstream for producing plots of response quantities as a function of

time. Its use is demonstrated in the stepped beam example runstream.

$ ...............................................................

$ (TR PLOT)

$ ...............................................................

*XQT U1
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$

$ PLOTS TRANSIENT, TIME HISTORY DATA PRODUCED BY DR/TRI

$

*REGISTER EXCEPTIONS TLIB

*REGISTER STORE ("TLIB" TR REG I I)

*REGISTER RETRIEVE("TLIB" TR REG I I)

$ DEFAULT REGISTER ASSIGNMENTS

INLIB=I

IDJK = 'NONE

IDQ = 'NONE

YNAME = 'DISP

N3 = I

TITLE = 'TITLE

ID = 1

DPT=O

*DATA,OPT(TRPLOT OPTIONS)

NSI = TUC,NI("INLIB" HIST "YNAME"" N3" MASK)

NWI = TOC,NWDS("INLIB" HIST "YNAME" "N3" MASK)

NBLK = TOC,NBLOCKS("INLIB" HIST "YNAME" "N3" MASK)

NJBL = TOC,NJ("INLIB" HIST "YNAME" "N3" MASK)

NSI : ! NWI : ! NBLK : ! NJBL

NSTE=NWI/NSI

NPPT=NSTE

DT=DS,I,I,I("INLIB" DT MASK MASK MASK) $ TIME STEP

TIDQ = TOC,IERR("INLIB" SEL "IDQ" MASK MASK)

TIDJ = TOC,IERR("INLIB" SEL "IDJK" MASK MASK)

TTIT = TOC,IERR("INLIB" "TITLE" MASK MASK MASK)

*UNLINE=O

*XQT AUS

TABLE(NI=I,NJ="NPPT") : "TLIB" XTAB

DDATA="DT"

J=I,"NPPT" : 0.0

$

$ LOOP OVER ALL RESPONSE QUANTITIES

$

NJLS = I-NBLK*NJBL + NSTE $ NJ OF LAST BLOCK

KBLK = NBLK - 1

DBLS = KBLK*NJBL

JBLK = KBLK

NSMt = NSI - 1

SBASE = O

NJLS

II=I : ! NI=NSI

*LABEL LI

DEFINE Y = "INLIB" HIST "YNAME" "N3" I I,"JBLK"

TABLE(NJ="NSTE") : "TLIB" YTAB AUS "II"

*JZ(KBLK,L2)

TRAN(SOUR=Y,SBAS="SBAS",SSKIP="NSMI",ILIM=I,JLIM="NJBL")

*LABEL L2

DEFINE Y = "INLIB" HIST "YNAME ....N3" I "NBLK","NBLK"

TABLE,U " "TLIB" YTAB AUS "II"

TRAN(SOUR=Y,SBAS="SBAS",SSKIP="NSMI",ILIM=I,JLIM="NJLS",DBAS="DBLS")

! SBASE = SBASE + 1

! Ii=Ii+I

*JGZ,-I(NI,LI)

S

$ GENERATE AN X,Y PLOT FOR EACH RESPONSE QUANTITY

$

*ONLINE=I

*XQT PXY

RESET DEVICE=META

RESET NDEV=4014

FONT XNI/M=i : FONT YNUM=I

FONT XLAB=I : FONT YLAB=I

FONT TEXT=I
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X = "TLIB" XTAB

XLABEL' TIME (SECONDS)

*JNZ (TIDJ, llO)

YLFOKMAT, 72>

'(4H J =,I2,9H JOINT = ,I5,8H COMP = ,I2,8H HIST = ,A4,6H ID = ,I6)

*LABEL II0

*JNZ (TIDQ, 120)

YLFORMAT, 72>

'(4H J= ,I2,1X,A4,6H GRP= ,I2,6H IND= ,15,7B CDMP= ,A4,5B ID = ,I6)

*LABEL 120

XAXIS=3,5, I0

YAXIS=4,5,10

TPOS=O, 0

! II=l : ! NI=NSI

*JNZ (TTIT, L3)

TEXT = "TITLE"

*LABEL L3

ADVANCE

BOUNDARIES = .01 .99 .04 .1

*INZ(TTIT ,L4)

PLOT TEXT

* LABEL L4

BOUNDARIES=.OI .99 . 15 .85

Y = "TLIB" YTAB AUS "II"

*JNZ (TIDJ, 210)

! JOINT = DS,I,"II",I("INLIB" SEL "IDJK" MASK MASK)

! COMP - DS,2,"II",I("INLIB" SEL "IDJK" MASK MASK)

YLABEL "II" "JOINT" "COMP" "YNAME" "ID"

*LABEL 210

*JNZ (TIDQ, 220)

ENAME _ DS,I,"II",I("INLIB" SEL "IDq" MASK MASK)

EGRP = DS,2,"II",I("INLIB" SEL "IDQ" MASK MASK)

EINDX = DS,3,"II",I("INLIB" SEL "IDQ" MASK MASK)

ECOMP " DS,4,"II",I("INLIB" SEL "IDQ" MASK MASK)

YLABEL "If" "ENAME" "EGRP" "EINDX" "ECOMP" "ID"

*LABEL 220

INIT

PLOT CURV

! Ii=Ii+l

*JGZ,-I (N1,L3)

*XQT UI

*REGISTER RETRIEVE ("TLIB" TR MEG I I)

*FREE "TLIB"

*RETURN

*END

Runstream TR VECTORS

Runstream TR VECTORS generates basis vectors by calling the system eigensolver, calling

runstream TR RITZ, using the static mode method, or by other experimental techniques.

............................................................

$ (TR,VECTORS) - COMPUTE VECTORS FOR USE IN DYNAMIC ANALYSIS

..............................................................

*XQT AUS

R = RIGID(1)

CR = PROD("MNAME",R)

Z = NDDF,I(CR)

! NDDF = DS,I,I,I(1 Z AUS 1 1)

! NDDF

*IF("METHOD" NE MODE): *GOTO I00

*XQT E4

RESET NMODES="NMDDES"

RESET M="MNAME"

RESET NDDF="NDDF"

RESET CONV="CONV"
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*DCALL,OPT(E4 PARAMETERS)

*GOTO 200

$
*LABEL i00

*IF("METHOD" NE RITZ): *GOTO 105

MAXHZ = 1.03E+I0

NMD = NMODES

SCALE = 1.0

AFLIB = i

VLIB = 1

*DCALL(TR RITZ )

*GOTO 200

$
*LABEL 105

*IF("METHOD" NE OLD) *GOTO ii0

*XQT DCU

COPY 3 1VIBR MODE

COPY 3 1VIBR EVAL

*GOTO 200

*LABEL II0

*IF("METHOD" NE ONES): *GOTO 115

*DCALL(TEST NEB3)

*GOTO 200

*LABEL 115

*IF("METHOD" NE STAT): *GOTO 120

*XQT E4

RESET NMODES="NMODES"

RESET M="MNAME"

RESET NDDF="NDDF"

RESET CONV="CONV"

*DCALL,OPT(E4 PARAMETERS)

*XQT DRSI

*XQT SSOL

$ 0RTHOGONALIZE STATIC SOLUTION AND APPEND T0 SET OF MODE SHAPES

*DCALL(TR,GRAM)

$ MAKE THE VECTORS 0RTHOGONAL WITH RESPECT TO BOTH K AND M

*DCALL(TR DIAG)

*XQT VPRT

PRINT Sl AUS

*XQT DCU

TOC I

PRINT I VIBR EVAL

*LABEL 120

*IF("METHOD" NE UMOT): *GO TO 200

*XQT AUS

Z = NDDF,I,2(CR)

*X_T DRSI

RESET C0N=2

*XQT AUS

UDF=I

SSPREP(K,2)

*XQT DCU

CHANGE 1BNF MASK MASK MASK VIBR MODE 1 1

$ UNCOUPLE THE SYSTEM

*DCALL(TR,DIAG)

$ END OF METHODS OPTIONS

*LABEL 200

*END

RunstreaTn TR GRAM

TR GRAM isa utilityrunstream for performing a Gram-Schmidt orthogonalizationof a set

of vectors.

$ ..............................................................

$ (TR,GRAM) - PERFORM GRAM-SCHMIDT PROCESS TO M-ORTHOGONALIZE
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$ STAT DISP WITH RESPECT TO VIBR MODE AND THEN

$ REPLACE THE LAST VIBR MODE WITH THE NEW VECTOR

..............................................................

*XQT AUS

! NMMI = NMODES - 1

DEFINE X = VIBR MODE I i I,"NMMI"

DEFINE S = STAT DISP 1 1

DEFINE M = "MNAME"

INLIB=IO : OUTLIB=IO

$ DRTHOGOHALIZE THE STATIC SOLUTION WITH RESPECT TO THE MODE SHAPES

MX z PROD(M,X)

XTMS = XTY(MX,S)

A = CBR(X, XTMS)

SI = SUM(S, -I.0 A)

$ NOW SCALE THE VECTOR

MS = PROD(M,SI)

STMS = XTY(S1,MS)

! STMS = DS,1,l,I(10 STMS AUS 1 I) : ! STMS = STMS**.5 : ! STMS = I.O/STMS

TEMP MODE i I = UNION("STMS" SI,X)

*XQT DCU

CHANGE 10 TEMP MODE 1 1 VIBR MODE 1 1

COPY 10 1 VIBR MODE 1 1

*DELETE 10

*END

Runstream SENS DVUP

SENS DVUP is a utility runstream for updating the design variable registers based on the

data sets X ADS and XNAME ADS. It is always called immediately before calling MODEL so the

current values of the design variables are available for use.

S ...............................................................

$ (SENS DVUP) - UPDATE DESIGN VARIABLE REGISTERS FROM DATASET

...............................................................

*XQT U1

! N = TOC,NJ(1 XNAME ADS 1 1)

! I=I

*LABEL I0

RNAME = DS,I,"I",I(I XNAME ADS I i)

RVAL = DS,I,"I",I(I X ADS i i)

"RNAME" = "RVAL"

"RNAME"

I = I + 1

*JGZ,-I (N, i0)

*END

Runstream TR DXDV 1

The TR DXDV n runstreams implement the different sensitivity methods. The structure of

all these runstreams is similar. In each case there is a loop over the designated design variables,

and sensitivities are calculated of the required response quantities at the set of critical points.

Within this loop there is at least one call to runstream MODEL to form a perturbed design,

a call to form a set of new reduced equations, and a call to processor DRX to integrate the

reduced equations in time. Runstream TR DXDV 1 implements the forward difference method

with either fixed or updated basis vectors.

...............................................................

$ (TR DXDV I) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ USING THE FORWARD DIFFERENCE OPERATOR AND

$ EITHER FIXED OR UPDATED MODES

$ UPDATE HISTORY

$ 6/28/88 WHG - MODIFIED FOR VELO, ACCE, STRESSES

...............................................................

*XqT U1

*REGISTER STORE(I DXDV REGISTERS i I)
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*REGISTER RETRIEVE(I DXDV REGISTERS I I)

*RGI

FDCH = .001

FDMCH = .0001

XLIB = 5

OPT = 0

RLIB = 14

DRMETHOD=O

DXMD=UPDATED

*DCALL,OPT(DXDV PARAMETERS)

*SHOW

*DCALL(TR,DPREP)

$

$ LOOP OVER ALL DESIGN VARIABLES

$

! NDV = TOC,NJ(1 X ADS 1 i)

! NCNT =NDV

IDV = 1

*LABEL i0

*XQT U1

! IFLG = DS,I,"IDV",I(I XFLG ADS I I)

*JZ(IFLG,IO0)

*LIBS "XLIB" 2 3 4 I 6 7 8 9 I0 11 12 13 14 15 16 17 18 19 20

*X_T DCU

COPY "XLIB" I XNAME ADS i 1

*XQT U3

KP2

FORMAT I'(IHI,2OX,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)

PRINT(I) "IDV"

*XQT AUS

DEFINE X = "XLIB" X ADS i 1

TABLE(NI=I,NJ="NDV") : X ADS i i

J=I,"NDV" : 1.0

J="IDV" : "FDCH"

TRAN(SOURCE=X, OPEKATION=MULT)

$ CHECK FOR TOO SMALL A STEP

! X = DS,I,"IDV",I("XLIB" X ADS I I)

! DX = FDCH*X

*IF("DX" GT "FDCHM"): *GOTO 20

DX = FDMCH

! X = X + FDMCH

TABLE,U : X ADS I I

OPER = XSUM

J="IDV" : "X"

*LABEL 20

*CALL(SENS,DVUP)

$ FORM PERTURBED MODEL

*0NLINE=O

*DCALL(MODEL)

*ONLINE=I

*XQT DCU

COPY "XLIB" i TIME

COPY "XLIB" I CA

COPY "XLIB" i DMPD

*IF("DXMD" NE FIXE): *GOTO SO

COPY "XLIB" I VIBR MODE

*DCALL(TR,DIAG)

*GO TO 40

*LABEL 30

*IF("DXMD" NE UPDA): *GOTO 40

*DCALL(TR,VECTOKS)

*LABEL 40

*XQT AUS

DEFINE X = VIBR MODE i I I,"NMODES"

DEFINE F = APPL FORC I

XTF = XTY(X,F)
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• DCALL(TR,REDM) VLIB=I

• XQT DRX

DTEX(DT="DT",METHOD="DRMETHOD",NTERMS="NTEKMS")

TRI(QXLIB=I,QXIL=I,QX2L=I,T2="T2",LB="BLKSIZE" )

• DCALL(TR,DBACK 1)

$
$ COMPUTE DERIVATIVES USING FORWARD DIFFERENCE OPERATOR

$
' OVDX = I.O/DX

! MOVD = - DVDX

! I = i : ! N = NBCK

• LIBS I 2 3 4 5 6 ? 8 9 I0 II 12 13 14 15 16 17 18 19 20

• LABEL 80

• XQT AUS

' NM = DS,"I",I,I(I BACK LIST I i)

! IEKK = TOC,IERR(I SEL "NM" MASK MASK)

,JNZ(IERR,90)

DEFINE CPI = "XLIB" CRPT "NM"

DEFINE CPO = CRPT "NM"

DXDV "NM" "IDV" = SUM("OVDX" CPI "MOVD" CPO)

• XQT DCU

PRINT I DXDV "NM" "IDV"

• LABEL 90

{ I = I + 1

*JGZ,-I(N,80)

ERASE "XLIB"

• LABEL 100

! IDV = IDV + 1

,JGZ,-I(NCNT,IO)

$
• XQT U1

• REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)

*RETURN

,END

Runstream TK DXDV 3

Runstream TR DXDV 3 implements the fixed-mode semianalytical sensitivity method. De-

pending on the call to runstream TK DBACK, either the mode displacement or mode acceleration

method is used to recover the physical sensitivities.

_ ...............................................................

$ (TR DXDV 3) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ SEMIANALYTICALLY

$ ................................................................

• XQT U1

• REGISTER STDRE(I DXDV REGISTERS 1 i)

• REGISTER RETRIEVE(I DXDV REGISTERS I I)

*RGI

FDCH = .OOl

FDMCH = .0001

XLIB = 5

OPT = 0

RLIB = 14

DRMETHOD=O

• DCALL,OPT(DXDV PARAMETERS)

,SHOW

$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS

$
*DCALL(TR,DPREP)

• XQT UI

$
$ LOOP OVER ALL DESIGN VARIABLES

$
! NOV = TOC,NJ(I X ADS I I)
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! NCNT = NDV

! IDV = I

*LABEL i0

*LIBS "XLIB" 2 3 4 I 6 7 8 9 I0 ii 12 13 14 15 16 17 18 19 20

*XQT U1

! IFLG = DS,I,"IDV",I("XLIB" XFLG ADS 1 1)

*JZ(IFLG,IO0)

*X_T DCU

COPY "XLIB" 1XNAME ADS 1 1

*XQT U3

RP2

FOKMAT I'(IHI,2OX,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,13)

PRINT(I) "IDV"

*XQT AUS

DEFINE X = "XLIB" X ADS I I

TABLE(NI=I,NJ="NDV ") : X ADS 1 1

J=I,"NDV" : 1.0

J="IDV" : "FDCH"

TRAN(SOURCE=X, OPERATION=MULT)

$ CHECK FOR TO0 SMALL A STEP

! X = DS,I,"IDV",I("XLIB" X ADS I i)

! DX = FDCH*X

*IF("DX" GT "FDCHM'): *GOTO 20

! DX = FDMCH

! X = X + FDMCH

TABLE,U : X ADS i I

OPER = XSUH

J="IDV" : "X"

*LABEL 20

*CALL(SENS,DVUP)

$ FORM PERTUKBED MODEL

*ONLINE=O

*DCALL(MODEL)

*ONLINE=I

*XQT AUS

DEFINE X = "XLIB" VIBR MODE I 1 I,"NMODES"

DEFINE KO = "XLIB" K SPAR

DEFINE K1 = K SPAR

DEFINE MO = "XLIB ....MNAME"

DEFINE M1 = "MNAME"

DEFINE DO = "XLIB" DAMP SPAR

DEFINE D1 = DAMP SPAR

DEFINE FO = "XLIB" APPL FORC I

DEFINE FI = APPL FORC 1

! IDSP = TOC,IERR(I DAMP SPAR MASK MASK)

! OVDX = I.O/DX

! MOVD = -OVDX

DKDV = SUM("OVDX" KI "MOVD" KO)

DMDV = SUM("OVDX" MI "MOVD" MO)

DFDV = SUM("OVDX" F1 "MOVD" FO)

*IF("IDSP" EQ 0): DDDV = SUM("OVDX" DI "MOVD" DO)

DKX = PROD(DKDV,X)

DMX = PROD(DMDV,X)

*IF("IDSP" EO 0): DDX = PROD(DDDV,X)

RDKX = XTY(X,DKX)

RDMX = XTY(X,DMX)

*IF("IDSP" EQ 0): RDDX = XTY(X,DDX)

XTF AUS = XTY(X,DFDV)

*XQT DCU

COPY "XLIB" i TIME

COPY "XLIB" i CA

COPY "XLIB" i DT AUS

COPY "XLIB" I DTEX AUS

COPY "XLIB" I DCON AUS $ CONSTANTS FOR NEWMARK METHOD

$
$ FORM THE RIGHT-HAND-SIDE PSEUDO LOAD VECTOR
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$

*XQT DRX

BACK(LRZ="BLKSIZE",PRINT=O)

T = -I.0 RDMX : Y = "XLIB" QX2 AUS

*IF("IDSP" EQ 0): T = -1.0 RDDX : Y = "XLIB" QXl AUS

T = -1.0 RDKX : Y = "XLIB" QX AUS

Z = FH AUS

*XQT DRX

TRI(QXLIB=I,QXILIB=I,QX2LIS=I,T2="T2",FHLIB=I,LB="BLKSIZE")

$

$ BACK TRANSFORM FOR NECESSARY SENSITIVITIES OF PHYSICAL

$ QUANTITIES

$

*DCALL(TR,DBACK,4)

*XQTC DCU

ERASE I

*LABEL i00

! IDV = IDV + I

*JGZ,-I(NCNT,IO)

$

*LIBS I 2 3 4 5 6 7 8 9 10 Ii 12 13 14 15 16 17 18 19 20

*XQT U1

*REGISTER RETRIEVE(I DXDV REGISTERS I I)

*RETURN

*END

Runstream TR DXDV 5

Runstream TR DXDV 5 implements the overall central difference method using either fixed

or updated basis vectors.

$ ...............................................................

$ (TR DXDV 5) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ USING TWO POINT CENTRAL DIFFERENCE OPERATOR

$ WITH UPDATED OR FIXED MODES

$ ...............................................................

*XQT U1

*REGISTER STORE(1DXDV REGISTERS 1 1)

*REGISTER RETRIEVE(1DXDV REGISTERS 1 1)

*RGI

FDCH = .001

FDMCH = ,0001

XLIB = 5

YLIB = 6

OPT = 0

RLIB = 14

DRMETHOD=O

DXMD=UPDATED

*DCALL,OPT(DXDV PARAMETERS)

*SHOW

$

$ INITIALIZATION FOR DERIVATIVE CALCULATIONS

$

*DCALL(TR,DPREP)

$

$ LOOP OVER ALL DESIGN VARIABLES

$

! NDV = TOC,NJ(I X ADS I I)

! NCNT = NDV

! IDV = 1

*LABEL I0

*XQT U1

! IFLG = DS,I,"IDV",I(I XFLG ADS I 1)

*JZ(IFLG,IO0)

*XQT U3

RP2
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FORMAT I'(IHI,2OX,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)

PRINT(1) "IDV"

*LIBS "XLIB" 2 3 4 I 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

*XQT AUS

! IS= 1

NST = 2

! SIGN = 1.0

$
$ DO ANALYSIS FOR BOTH POSITIVE AND NEGATIVE STEPS

$
*LABEL 15

*XQT DCU

COPY "XLIB" i XNAME ADS i 1

*XQT AUS

DEFINE X = "XLIB" X ADS 1 1

TABLE(NI=I,NJ="NDV ") : X ADS I i

TRAN(SOURCE=X)

$ DIFFERENCE APPROPRIATE DESIGN VARIABLE

! X = DS,I,"IDV",I('XLIB" X ADS I I)

! DX = FDCH*X

*IF("DX" GT "FDCHM"): *GDTO 20

! DX = FDMCH

*LABEL 20

! X = DX*SIGN + X

TABLE,U : X ADS 1 1

OPER = XSUM

J="IDV" : "X"

*CALL(SENS,DVUP)

$ FORM PERTURBED MODEL

*ONLINE=O

*DCALL(MDDEL)

*ONLINE=I

*XQT DCU

COPY "XLIB" I TIME

COPY "XLIB" i CA

COPY "XLIB" I DMPD

*IF('DXMD" NE FIXE): *GOTO 30

COPY "XLIB" i VIBR MODE

*DCALL(TR,DIAG)

*GO TO 40

*LABEL 30

*IF("DXMD" NE UPDA): *GOTO 40

*DCALL(TR,VECTORS)

*LABEL 40

*XQT AUS

DEFINE X = VIBR MODE I i I,"NMODES"

DEFINE F = APPL FORC 1

XTF = XTY(X,F)

*DCALL(TR,REDM) VLIB=I

*XQT DRX

DTEX(DT="DT",METHOD="DP_ETHBD",NTERMS="NTERMS")

TRI(QXLIB=I,T2="T2",QXILIB=I,QX2LIB=I,LB="BLKSIZE")

*DCALL(TR,DBACK 1)

! SIGN = -1.0

*LIBS "YLIB" 2 3 4 1 5 7 8 9 I0 11 12 13 14 15 16 17 18 19 20

*JGZ,-I(NST,15)

COMPUTE DERIVATIVES USING CENTRAL DIFFERENCE OPERATOR

TWDX = 2.0*DX

OVDX = I.O/TWDX

MOVD = - OVDX

I = i : ! N = NBCE

*LIBS I 2 3 4 5 6 7 8 9 i0 II 12 13 14 15 16 17 18 19 20

*LABEL 80

*XQT AUS

81



! NM = DS,"I",I,I(I BACK LIST 1 i)

! IERR = TDC,IERR(I SEL "NM" MASK MASK)

*JNZ(IERR,90)

DEFINE CPI = "XLIB" CRPT "NM"

DEFINE CPO = "YLIB" CRPT "NM"

DXDV "NM" "IDV" = SUM("OVDX" CPI "MDVD" CPO)

*XQT DCU

PRINT I DXDV "NM" "IDV"

*LABEL 90

' I = I + i

*JGZ,-I(N,80)

ERASE "XLIB"

ERASE "YLIB"

*LABEL I00

! IDV = IDV + I

*JGZ,-I(NCNT,IO)

$

*XQT U1

*REGISTER RETRIEVE(I DXDV REGISTERS i I)

*RETURN

*END

Runstream TR DXDV 6

Runstream TR DXDV 6 implements the semianalytical method with nonzero d'_/dx. The

called procedure TR DPHI determines how the basis vector derivatives are calculated.

$ ...............................................................

$ (TR DXDV 6) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ SEMIANALYTICALLY BUT WITH THE EFFECT OF CHANGING

$ MDDES INCLUDED

S ................................................................

*XQT U1

*REGISTER STORE(I DXDV REGISTERS i I)

*REGISTER RETRIEVE(I DXDV REGISTERS I i)

*RGI

FDCH = .001

FDMCH = .0001

XLIB = 5

OPT = 0

RLIB = 14

DRMETHOD=O

*DCALL,OPT(DXDV PARAMETERS)

*SHOW

$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS

$
*DCALL(TR,DPREP)

*XQT U1

$
$ LOOP OVER ALL DESIGN VARIABLES

$
! NDV = TOC,NJ(I X ADS I I)

! NCNT = NDV

! IDV = I

*LABEL i0

*LIBS "XLIB" 2 3 4 I 6 7 8 9 i0 II 12 13 14 15 16 17 18 19 20

*XQT UI

! IFLG = DS,I,"IDV",I("XLIB" XFLG ADS I i)

*JZ(IFLG,IO0)

*XQT DCU

COPY "XLIB" I XNAME ADS I 1

*XQT US

RP2

FORMAT I'(IHI,2OX,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,13)

PRINT(1) "IDV"
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*XQT AUS

DEFINE X = "XLIB" X ADS I 1

TABLE(NI=I,NJ="NDV") : X ADS i 1

J=I,"NDV" : 1.0

J="IDV" : "FDCH"

TRAN (SOURCE=X, OPERATION=MULT)

$ CHECK FOR TOO SMALL A STEP

! X = DS,I,"IDV",I("XLIB" X ADS I i)

! DX = FDCH*X

*IF("DX" GT "FDCHM"): *GOTO 20

! DX = FDMCH

! X = X + FDMCH

TABLE,U : X ADS I 1

OPER = XSUM

J="IDV" : "X"

*LABEL 20

_CALL (SENS, DVUP)

! OVDX = I,O/DX

! MOVD =-OVDX

$ FORM PERTURBED MODEL

*ONLINE=O

*DCALL (MODEL)

$ CALCULATE DERIVATIVES OF MODES SHAPES

*XQT AUS

DEFINE KO = "XLIB" K SPAR

DEFINE K1 = K SPAR

DEFINE MO = "XLIB ....MNAME"

DEFINE MI = "MNAME"

DKDV = SUM("OVDX" K1 "MOVD" KO)

DMDV = SUM("OVDX" MI "MOVD" MO)

*DCALL (TR,DPHI, 3)

,XQT DCU

COPY "XLIB" i DT AUS

COPY "XLIB" I DTEX AUS

COPY "XLIB" 1DCON AUS $ CONSTANTS FOR NEWMARK METHOD

*XQT AUS

DEFINE XO = "XLIB" VIBR MODE I I I,"NMODES"

DEFINE KO = "XLIB" K SPAR

DEFINE KI = K SPAR

DEFINE MO = "XLIB" "MNAME"

DEFINE MI = "MNAME"

DEFINE DO = "XLIB" DAMP SPAR

DEFINE D1 = DAMP SPAR

DEFINE FO = "XLIB" APPL FORC I 1

DEFINE F1 = APPL FORC I 1

DEFINE DXDV = DXDV AUS "IDV"

$
$ CALCULATE DERIVATIVE TERMS INVOLVING THE STIFFNESS MATRIX

$
DKXl = PROD(DKDV,XO)

DKX2 = PROD(KO,XO)

DKX3 = PROD(KO,DXDV)

XDKI = XTY(XO,DKXI)

XDK2 = XTY(DXDV,DKX2)

XDK3 = XTY(XO,DKX3)

XTMP = SUM(XDKI,XDK2)

XDKX = SUM(XTMP,XDK3)

$
$ CALCULATE DERIVATIVE TERMS INVOLVING THE MASS MATRIX

$
DMXI = PRDD(DMDV,XO)

DMX2 = PROD(MO,XO)

DMX3 = PROD(MO,DXDV)

XDMI = XTY(XO,DMX1)

XDM2 = XTY(DXDV,DMX2)

XDM3 = XTY(XO,DMX3)
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XTMP = SUM(XDMI,XDM2)

XDMX = SUM(XTMP,XDM3)

$
$ CALCULATE DERIVATIVE TERMS INVOLVING THE DAMPING MATRIX

$
! IDSP " TOC,IERR(I DAMP SPAR MASK MASK)

*IF("IDSP" HE 0): *GOTO 30

DDDV = SUM("OVDX" DI "MOVD" DO)

DDXI = PROD(DDDV,XO)

DDX2 - PROD(DO,XO)

DDX3 = PROD(DO,DXDV)

XDDI = XTY(XO,DDXl)

XDD2 = XTY(DXDV,DDX2)

XDD3 " XTY(XO,DDX3)

XTMP = SUM(XDDI,XDD2)

XDDX = SUM(XTMP,XDD3)

*LABEL 30

$
$ CALCULATE DERIVATIVE TERMS INVOLVING THE FORCE VECTOR

$
DFDV = SUM("OVDX" F1 "MDVD" FO)

XFI = XTY(DXDV, FO)

XF2 " XTY(XO, DFDV)

XTF AUS _ SUM(XFI, XF2)

*XQT DCU

PRINT 1XTF AUS

COPY "XLIB" 1 TIME AUS

COPY "XLIB" 1 CA AUS

$

$ FORM THE RIGHT-HAND-SIDE PSEUDO LOAD VECTOR

$

*XQT DRX

BACK(LRZ="BLKSIZE",PRINT=O)

T = -I.0 XDMX : Y = "XLIB" QX2 AUS

"IF("IDSP" EQ 0): T = -I.0 XDDX : Y = "XLIB" QXI AUS

T = -i.0 XDKX : Y = "XLIB" QX AUS

Z = FH AUS

*XQT DRX

TRI(QXLIB_I,QXILIB=I,QX2LIB=I,T2="T2",FHLIB=I,LBm"BLKSIZE '')

"XQT DCU

TOG 1

$
$ BACK TRANSFORM FOR NECESSARY SENSITIVITIES OF PHYSICAL

$ QUANTITIES

$
*DCALL(TR,DBACK,3)

*XQTC DCU

ERASE 1

*LABEL i00

! IDV = IDV + 1

*JGZ,-I(NCNT,IO)

$
*LIBS I 2 3 4 5 6 7 8 9 I0 ii 12 13 14 15 16 17 18 19 20

*ONLINE=I

*XQT U1

*REGISTER RETRIEVE(I DXDV REGISTERS i I)

,RETURN

*END

Runstream TR DPREP

TR DPREP isa utilityrunstream used by allthe sensitivitycalculationrunstreams. Itsmain

task isto locatethe criticalpoints for allrequired response quantities.

$ .................................................................

$ (TR,DPREP) - PREPARATION FOR SENSITIVITY CALCULATIONS
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$

$ FORM CRITICAL POINT TABLES FOR RESPONSE QUANTITIES

$

! NBCK = TOC,NI("QLIB" BACK LIST 1 I)

{ I = 1 : ! N = NBCK

*LABEL iO

' NM = DS,"I",I,I("QLIB" BACK LIST i I)

! IERR = TOC,IERR("QLIB" SEL "NM" MASK MASK)

*JNZ(IERR,20)

*XQT UIO

CRIT(Y="QLIB" HIST "NM",DT="DT", NCRIT="NCRIT", &

CRPT="QLIB" CRPT "NM",CRTI="QLIB" CRTI "NM",

PCH=.25)

*XQT DCU

PRINT "QLIB" CRTI "NM"

PRINT "QLIB" CRPT "NM"

*LABEL 20

{I=I+l

*JGZ,-I(N,IO)

*XQT UI

*(E4 PARAMETERS) EOFX

$RESET NFCT="NMODES", NLIM="NMODES"

RESET NIF="NMODES"

IFSOURCE= "XLIB" VIBR MODE i 1

*EOFX

*END

Runstream TR DBACK 1

TR DBACK n runstreams implement the different procedures for recovering the physical

sensitivities. They all rely heavily on runstream TR CRPT which recovers a specific physical

quantity at the critical points. Runstream TR DBACK i recovers the sensitivities with the mode

displacement method and is used in the overall finite difference procedures.

_ .................................................................

$ (TR DBACK I) - BACK TRANSFORMATION FOR DERIVATIVES USING MODE

$ DISPLACEMENT METHOD

.................................................................

! IIB= 1 : ! NNB = NBCK

*LABEL I0

*XQT AUS

DEFINE X = VIBR MODE I I I,"NMODES"

! NM = DS,"IIB",I,I("XLIB" BACK LIST I I)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)

*JNZ(IERR,200)

$
$ DISPLACEMENTS

$
*IF("NM" ME DISP): *GOTO 30

DEFINE IDJK = "XLIB" SEL DISP

TMAT VMOD = SVTRAN(IDJK,X)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=1 LIB3=1TNAME=VMOD CNAME=DISP Q=QX

*GOTO 200

*LABEL 30

$
$ VELOCITIES

$
*IF("NM" NE VELO): *GOTO 50

DEFINE IDJK = "XLIB" SEL VELO

TMAT VVEL = SVTRAN(IDJK,X)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=1 LIB3=1TNAME=VVEL CNAME=VELO Q=QXI

*GOTO 200

*LABEL 50

$
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$ ACCELERATIONS

$

•IF("NM" NE ACCE): ,GOTO ZO

DEFINE IDJK = "XLIB" SEL ACCE

TMAT VACC = SVTRAN(IDJK,X)

•DCALL(TR,CRPT) LIBI="XLIB" LIB2=1 LIB3=1TNAME=VACC CNAME=ACCE Q=QX2

•GOTO 200

•LABEL 70

$
$ REACTIONS

$
• IF("NM" NE REAC): "GOTO 90

•GOTO 200

•LABEL 90

$

$ STRESSES

$

• IF("NM" NE STRE): ,GOTO Ii0

• XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = VIBR MODE 1 i I,"NMODES"

T = TMAT VSTRE

•DCALL(TR,CRPT) LIBI="XLIB" LIB2=1 LIB3=1TNAME=VSTRE CNAMEzSTRE Q=QX

•GOTO 200

•LABEL II0

•LABEL 200

!IIB =IIB + 1

"JGZ,-I(NNB,IO)

! IIB= FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()

! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

Q = FREE(>

"END

Runstream TE DBACK 2

Runstream TR DBACK 2 recovers sensitivities in the _xed-Mode Mode displacement version

of the semiana|ytica| Method.

$ .................................................................

$ (TR DBACK 2) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMIANALYTICAL METHOD

$ UPDATE HISTORY

$ ..............

$ 6/22/88 WHG - MODIFIED FOR SEMIANALYTICAL METHOD

$ 6/21/88 WHG - CREATED FROM (TR,DBACK,I) FOR UPDATED MODES

$ .................................................................

! IIB= 1 : ! NNB = NBCK

•LABEL i0

•XQT AUS

! NM = DS,"IIB",I,I("XLIB" BACK LIST I i)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)

*JNZ(IERR,300)

$
$ DISPLACEMENTS

$

•IF("NM" NE DISP): *GOTO 30

•DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=1TNAME=VMOD CNAME=DISP Q=QX

•GOTO 200

•LABEL 30

$

$ VELOCITIES

$
•IF("NM" NE VELO): "GOTO 50

•DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=1TNAME=VVEL CNAME=VELO Q'QXl

•GOTO 200

86



*LABEL 50

$
$ ACCELERATIONS

$
*IF("NM" NE ACCE): *GOTO 70

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=1TNAME=VACC CNAME=ACCE O=QX2

*GDTO 200

*LABEL 70

$
$ REACTIONS

$
*IF("NM" NE REAC): *GOTO 90

*GOTO 200

*LABEL 90

$
$ STRESSES

$
*IF("NM" NE STRE): *GOTO ii0

$ FORM IS] [DQ/DV]

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=VSTRE CNAME=STRE Q-QX

*XQT DCU

CHANGE1 CRPTSTR_ 1 1 CRPTSTR1 1 1
$ FORM [DS/DV] [0]

*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" VIBR MODES 1 1 I,"NMODES"

T = TMAT VSTRE

*XQT AUS

DEFINE SO = "XLIB" TMAT VSTRESS

DEFINE S1 = TMAT VSTRESS

TMAT DSDV = SUM("OVDX" S1 "MOVD" SO)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=I LIB3="XLIB" TNAME=DSDV CNAME=STKE Q=QX

*XQT AUS

DEFINE STR1 = CRPT STRI

DEFINE STR2 = CRPT STRE

CRPT STRE = SUM(STRI,STR2)

*GOTO 200

*LABEL 110

*GOTD 300

*LABEL 200

*XOT DCU

CHANGE 1 CRPT "NM" 1 1 DXDV "NM" "IDV" 1

COPY I "XLIB" DXDV "NM ....IDV" 1

PRINT "XLIB" DXDV "NM" "IDV" I

*LABEL 300

! lIB =IIB + i

*JGZ,-I(NNB,IO)

!IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()

! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! O = FREE()

wEND

Runstream TR DBACK 3

Runstream TR DBACK 3 recovers sensitivities in the semianalytical method with nonzero

d_/dx.

$ .................................................................

$ (TR DBACK 3) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMIANALYTICAL METHOD WITH CHANGING MODES

$ UPDATE HISTORY

$ ..............

$ 6/22/88 WHO - MODIFIED FOR SEMIANALYTICAL METHOD

$ 6/21/88 WHO - CREATED FROM (TR,DBACK,I) FOR UPDATED MODES

$ .................................................................
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!IIB = 1 : ! NNB = NBCK

*LABEL 10

*XQT AUS

DEFINE DX = DXDV AUS "IDV" 1 1,"NMDDES"

! NM = DS,"IIB",I,I("XLIB" BACK LIST i i)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)

*JNZ(IERR,3OO)

$

$ DISPLACEMENTS

$

*IF('NM" NE DISP): *GOTO 30

DEFINE IDJK = "XLIB" SEL DISP

TMAT DVMX = SVTRAN(IDJK.DX)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=VMOD CNAME=DISP Q=QX

*XQT DCU

CHANGE I CRPT DISP i I CRPT DSPI I 1

*DCALL(TK,CKPT) LIBI="XLIB" LIB2=1LIB3="XLIB '' TNAME=DVMX CNAHE=DISP Q=QX

*XQT AUS

DEFINE D1 = CRPT DSPI

DEFINE D2 = CRPT DISP

CRPT DISP = SUM(DI,D2)

*GOTO 200

*LABEL 30

$

$ VELOCITIES

$

*IF("NM" NE VELO): *GOTO 50

DEFINE IDJK = "XLIB" SEL VELO

TMAT DVHX = SVTRAN(IDJK,DX)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=1TNAME=VVEL CNAME=VELO Q=QXI

*XQT DCU

CHANGE I CRPT VELO I I CRPT VELI i I

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=I LIB3="XLIB" TNAME=DVMX CNAME=VELO Q=QXI

*XQT AUS

DEFINE VI = CRPT VELI

DEFINE V2 = CRPT VELO

CRPT VELD = SUM(VI,V2)

*GOTO 200

*LABEL 50

$

$ ACCELERATIDNS

$

*IF("NM" NE ACCE): *GOTO 70

DEFINE IDJK = "XLIB" SEL ACCE

TMAT DVMX = SVTRAN(IDJK,DX)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=VACC CNAME=ACCE Q=QX2

*XOT DCU

CHANGE I CRPT ACCE I I CKPT ACCI I 1

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=1LIB3="XLIB" TNAME=DVMX CNAME=ACCE Q=QX2

*XQT AUS

DEFINE A1 = CRPT ACCI

DEFINE A2 = CRPT ACCE

CRPT ACCE = SUM(AI,A2)

*GOTO 200

*LABEL 70

$

$ REACTIONS

$

*IF("NM" NE REAC): *GOTO 90

*GOTO 200

*LABEL 90

$

$ STRESSES

$

*IF("NM" NE STRE): *GOTD 110

$ FORM [S] [DQ/DV]
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*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=VSTRE CNAME=STRE Q=QX

*XQT DCU

CHANGE 1CRPT STRE l I CRPT STRI I 1

$ FORM [DS/DV] [Q]

*XQT ES

RESET 0PER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" VIBR MODES i I I,"NMODES"

T = TMAT VSTRE

*XQT AUS

DEFINE SO = "XLIB" TMAT VSTRESS

DEFINE Si = TMAT VSTRESS

TMAT DSDV = SUM("OVDX" SI "MOVD" SO)

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=1LIB3="XLIB" TNAME=DSDV CNAME=STRE Q=QX

*XQT DCU

CHANGE i CRPT STRE I I CRPT STR2 i 1

$ FORM S [D PHI / DV] [Q]

*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = DXDV AUS "IDV" 1 I,"NMODES"

T = TMAT DSTRE

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=1LIB3="XLIB" TNAME=DSTRE CNAME=STRE Q=QX

*XQT AUS

DEFINE STRI = CRPT STRi

DEFINE STR2 = CRPT STR2

DEFINE STR3 = CRPT STRE

TMP = SUM(STRI,STR2)

CRPT STRE = SUM(TMP,STR3)

*GOTO 200

*LABEL ii0

*GOTO 300

*LABEL 200

*XQT DCU

CHANGE 1 CRPT "NM" 1 I DXDV "NM .... IDV" i

COPY I "XLIB" DXDV "NM .... IDV" 1

PRINT "XLIB" DXDV "NM .... IDV" 1

*LABEL 300

!IIB =IIB + 1

*JGZ,-I(NNB,IO)

!IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()

! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! Q = FREE()

*END

Runstream TR DBACK 4

Runstream TR DBACK 4 recovers sensitivities in the fixed-mode semianalytical method with

the mode acceleration method.

$ .................................................................

$ (TR DBACK 4) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMIANALYTICAL METHOD

$ WITH THE MODE ACCELERATION METHOD

$ .................................................................

*XQT AUS

DEFINE X = "XLIB" VIBR MODE 1 i I,"NMDDES"

DEFINE E = "XLIB" VIBR EVAL I 1

DEFINE DKX = DKX AUS

DEFINE DMX = DMX AUS

DEFINE ROMG = "XLIB" ROMG AUS

DEFINE XTDX = "XLIB" XTDX

DEFINE XOMD = "XLIB" XOMD

DEFINE XOME = "XLIB" XOME

*IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES '') : RDDX

$ CALCULATE VELOCITY TERM
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XOMI = CBR(XOME,RDKX)

XOMK = CBD(XDMI,ROMG)

! NJDM = TOC,NJ("XLIB" XTDX MASK MASK MASK)

! NBDM = TOC,NINJ("XLIB" XTDX MASK MASK MASK)

*IF("NJDM" NE "NBDM"): XOKC = CBR(XOMK,XTDX)

*IF("NJDM" EQ "NBDM"): XOKC = CBD(XOMK,XTDX)

XOMC = CBR(XOME,RDDX)

XQD = SUM(XOKC, -I.0 XOMC)

$ CALCULATE ACCELERATION TERM

DKXO = CBD(DKX, ROMG)

APPL FORC 887 = SUM(DKXO, -1.0 DMX)

$ CALCULATE DERIVATIVE OF THE PSEUDOSTATIC TERM

DEFINE USTAT = "XLIB" STAT DISP i i

FSLI = PROD(DKDV,USTAT)

APPL FORC 888 = SUM(DFDV,-I.O FSLI)

*XQT SSOL

RESET SET=887, KLIB="XLIB", KILIB="XLIB", REAC=O

*XQT SSOL

RESET SET=888, KLIB="XLIB", KILIB="XLIB", REAC=O

$
$ LOOP OVER ALL RESPONSE QUANTITY TYPES

$
! IIB= I _ ! NNB = NBCK

*LABEL I0

*XQT AUS

! NM = DS,"IIB",I,I("XLIB" BACK LIST i I)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)

*JNZ(IERR,300)

$

$ DISPLACEMENTS

$

*IF("NM" NE DISP): *GOTO 30

DEFINE IDJK = "XLIB" SEL DISP

DEFINE DACl = STAT DISP 887

DEFINE DUST = STAT DISP 888

DEFINE XTDX = "XLIB" XTDX

DEFINE DACC = "XLIB" THAT DACC

THAT DUST = SVTRAN(IDJK,DUST)

THAT DACI = SVTRAN(IDJK,DACI)

$ VELOCITY TERMS

TMAT DVLI = SVTRAN(IDJK,XQD)

$
*DCALL(TR,CRPT) LIBI="XLIB" LIB2=I LIB3="XLIB ''TNAME=DUST CNAME=DISP Q=A

TDCC(I CKPT DISP i I) : N2=DSPI

*DCALL(TR,CKPT) LIBI="XLIB" LIB2=I LIB3="XLIB ''TNAME=DVLI CNAME=DISP Q=QXI

TDCC(I CRPT DISP I I) : N2=DSP2

*DCALL(TR,CKPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=DVEL CNAME=DISP Q=QXI

TDCC(I CKPT DISP I i) : N2=DSP3

*DCALL(TR,CKPT) LIBIffi"XLIB" LIB2=1LIB3="XLIB" TNAME=DACl CNAME=DISP Q=QX2

TDCC(I CKPT DISP i i) : N2=DSP4

*DCALL(TR,CRPT) LIBIffi"XLIB''LIB2="XLIB" LIB3=I TNAME=DACC CNAME=DISP Q=QX2

TDCC(I CRPT DISP i I) : N2=DSP5

*XQT U4

VU

DEFINE D1 = CRPT DSPI

DEFINE D2 = CRPT DSP2

DEFINE D3 = CRPT DSP3

DEFINE D4 = CRPT DSP4

DEFINE D5 = CRPT DSP5

CRPT DISP = SUM(DI, D2, -1.0.D3, D4, -1.O.D5)

*GOTO 200

*LABEL 30

$
$ VELOCITIES

$

*IF("NM" NE VELO): *GOTO 50

9O



*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=1TNAME=VVEL CNAME=VELO Q=QXI

*GOTO 200

*LABEL 50

$
$ ACCELERATIONS

s
*IF("NM" NE ACCE): *GOTO 70

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3:I TNAME=VACC CNAHE=ACCE Q=QX2

*GOTO 200

*LABEL 70

s
$ REACTIONS

$
*IF("NM" NE REAC): *GOTD 90

*GOTO 200

*LABEL 90

$
$ STRESSES

s
*IF("NM" NE STRE): *GOTD 110

s
$ FORM [S] [DU/DV]

$
*LIBS 1 2 3 4 5 6 7 8 9 I0 Ii 12 13 14 15 16 17 18 19 20

*XQT ES

RESET OPER=T

IDQ = SEL STRESS

U="XLIB '' STAT DISP 888 : T = "XLIB" TMAT DTMI

U="XLIB" XQD AUS : T = "XLIB" TMAT DTM2

U="XLIB" STAT DISP 887 : T = "XLIB" TMAT DTM4

*LIBS "XLIB" 2 3 4 I 6 7 8 9 I0 Ii 12 13 14 15 iB 17 18 19 20

*XQT AUS

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=I LIB3="XLIB" TNAME=DTMI CNAME=STRE Q=A

TOCC(I CRPT STRE I i) : N2=STRI

*DCALL(TR,CRPT) LIBI="XLIB ''LIB2=I LIB3="XLIB" TNAME=DTM2 CNAME=STRE Q=qXI

TOCC(1CRPT STRE I I) : N2=STR2

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=SD CNAME=STRE Q=QX1

TDCC(I CRPT STRE 1 I) : N2=STR3

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=I LIB3="XLIB ''TNAME=DTM4 CNAME=STRE Q=QX2

TOCC(I CRPT STRE I i) : N2=STR4

*DCALL(TR,CRPT) LIBI="XLIB" LIB2="XLIB" LIB3=I TNAME=SP CNAME=STRE Q=QX2

TOCC(1CRPT STRE I I) : N2=STR5

$
$ FORM [DS/DV] [U]

s
*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" STAT DISP i i : T = TMAT SF

U = "XLIB" XDMD AUS : T = TMAT SD

U = "XLIB" XDME AUS : T = TMAT SP

*XQT AUS

DEFINE SO = "XLIB" ]'MAT SF : DEFINE $I = TMAT SF

TMAT DSF = SUM("OVDX" Sl "MOVD" SO)

DEFINE SO = "XLIB" TMAT SD : DEFINE S1 = TMAT SD

TMAT DSD = SUM("DVDX" SI "MflVD" SO)

DEFINE SO = "XLIB" TMAT SF : DEFINE S1 = TMAT SP

TMAT DSP = SUM("OVDX" Sl "MOVD" SO)

*DCALL(TR,CRFT) LIBI="XLIB" LIB2=1LIB3="XLIB" TNAME=DSF CNAME=STRE Q=A

TOCC(I CRPT STRE) : N2=STRB

*DCALL(TR,CRPT) LIBI="XLIB" LIB2=1LIB3="XLIB" TNAME=DSD CNAME=STRE Q=QXI

TOCC(I CRFT STRE) : N2=STR7

*DCALL(TR,CRPT) LIBI="XLIB ''LIB2=1LIB3="XLIB" TNAME=DSP CNAME=STRE Q=QX2

TOCC(I CRPT STRE) : N2=STR8

*XQT U4

vu

91



DEFINE S1

DEFINE S2

DEFINE $3

DEFINE $4

DEFINE $5

DEFINE S6

DEFINE S7

DEFINE S8

CRPT STRE

*GOTO 200

*LABEL II0

*GOTO 300

*LABEL 200

*XQT DCU

= CRPT STRI

= CKPT STR2

= CKPT STR3

= CRPT STR4

= CRPT STR5

= CKPT STR6

= CRPT STK7

= CRPT STR8

= SUM(SI, S2, -1.O'S3, $4, -I.O*SS, S6, -l.O*S7, -1.O'S8)

CHANGE I CKPT "NM" i i DXDV "NM" "IDV" 1

COPY i "XLIB" DXDV "NM" "IDV" 1

PRINT "XLIB" DXDV "NM" "IDV" 1

*LABEL 300

{IIB =IIB + I

*JGZ,-I(NNB,IO)

!IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()

{ LIB3 = FREE() : { TNAME = FREE() : ! CNAME = FREE()

! Q = FREE()

*END

Runstream TK DPHI 3

Runstream TR DPHI 3 implements the modified modal method for calculating eigenvector

derivatives and is called from sensitivity calculation runstream TR DXDV 6.

$ .................................................................

$ (TR,DPHI,3) - CALCULATE EIGENVECTOR DERIVATIVES USING THE

$ MODIFIED MODAL METHOD

$ .................................................................

*XQT AUS

INLIB=IO : OUTLIB=IO

DEFINE MO = "XLIB" "MNAME"

DEFINE DK = I DKDV SPAR

DEFINE DM = I DMDV SPAR

DEFINE XO = "XLIB" VIBR MODE I I I,"NMODES"

DEFINE AJK = AJK

DEFINE EV = "XLIB" VIBR EVAL i 1

MX = PROD(DM,XO)

AKK= XTYD(-.5 XO,MX)

TABLE(NI="NMODES",NJm"NMODES '') : AJK

TABLE(NI=I,NJ="NMODES") : UNIT : J=I,"NMODES" : 1.0

! J = i : ! NJ = NMODES

.LABEL I0

{ EJ = DS,"J",I,I("XLIB" VIBR EVAL I I)

MEJ = -EJ

DEFINE XJ = "XLIB" VIBR MODE I i "J","J"

DKDM = SUM(DK,"MEJ" DM)

MX = PROD(DKDM,XJ)

DLAM = XTY(XJ,MX)

! DLAM z DS,I,I,I(IO DLAM AUS i i)

AFI = PROD("DLAM" MO, XJ)

AF2 = SUM(AFI -i.0 MX)

,IF("J" EQ I): Ii APPL FORC = UNION(AF2)

*IF("J" NE i): ii APPL FORC = UNION,U(AF2)

AA = XTY(XO,MX)

DEN1 = SUM(-I.O EV, "EJ" UNIT)

DEN2 = PROD(EV,DENI)

TABLE,U : DEN2 : I="J" : J=l : 1.0

FACT = BECIP(DEN2)

AAB = PROD("EJ" FACT,AA)

DE1 : DPER=XSUM : DEST,U=AJK AUS
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SOURCE=AAB : JS=I : JD="J" : EXI

SOURCE=ARK : IS="J" : JS=I : ID="J" : JD="J" : EXI

!J=J+l

*JGZ,-I(NJ,IO)

DXDV = CBR(XO,AJK)

*XQT SSOL

RESET KLIB="XLIB ", KILIB="XLIB", QLIB=II, REAC=O, EP=O

*XQT AUS

DEFINE D1 = i0 DXDV AUS

DEFINE D2 = ii STAT DISP

DXDV AUS "IDV" = SUM(DI,D2)

*DELETE i0

*DELETE 11

*RETURN

*END

Runstream TR CRPT

TR CRPT is a utility runstream which performs the transformation from modal to physical

basis for a single response quantity at a set of critical times. It is heavily used by the TR DBACK

runstreams.

$ ..................................................................

$ (TR,CRPT) - FORM CRITICAL POINT RESPONSE TABLE

..................................................................

*ONLINE=O

*XQT AUS

NCRIT = TOC,NI("LIBI" CRTI "CNAME" i I) $ NUMBER OF TIMES

ND = TOC,NI("LIB2" TMAT "TNAME" 1 I) $ NUMBER OF RESP. QUANTITIES

NQ = TOC,NJ("LIB2" TMAT "TNAME" i I) $ NUMBER OF MODES

NJQ = TOC,NJ("LIB3" "Q" AUS MASK MASK)

ISTP = 0

$ LOOP OVER ALL RESPONSE QUANTITIES

!I=l

! N = ND

INLIB = 21 : OUTLIB = 21

*LABEL 20

DE1

SOURCE="LIB2" TMAT "TNAME"

ID = 1 : IS="I ''

DEST=TONE "TNAME .... I" 1

EXI

TABLE(NI="NQ', NJ="NCRIT '') : XBAR CRIT "I"

$ LOOP OVER NUMBER OF CRITICAL POINTS

' II = 1

NN = NCRIT

*LABEL 40

DE1

TIME = DS,"II",I,"I"("LIBI" CRTI "CNAME" 1 I)

ISTP = TIME/DT + .5

ISTP = ISTP + 1

IB = ISTP/NJQ

IST = IB*NJQ

*IF("IST" NE "ISTP"): ! IB = IB + i

! J = IB - 1 * NJQ : ! J = ISTP - J

SOURCE = "LIB3" "Q" AUS MASK MASK "IB" : JS="J" : DEST,U=XBAR CRIT "I"

JD = "II" : EXI

I II = II + 1

*JGZ,-I(NN,40)

DEFINE T = TONE "TNAME ....I"

DEFINE XBAR = XBAR CRIT "I"

CI AUS "I" = RPROD(T,XBAR)

TOCC(CI AUS "I") : NJ=I

DEFINE CI = CI AUS "I"

*IF("I" EQ I): i CRPT "CNAME" = UNION(CI)

*IF("I" GT I): i CRPT "CNAME" = UNION,U(CI)
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!I=I+I

*JGZ,-I(N,20)

*ONLINE=I

! NCRIT = FREE() : ! ND = FREE() : { NO = FREE() { NJO =FKEE()

{ ISTP = FREE() : { IB = FREE() : ! IST = FREE()

*END

Runstream TR DIAG

TR DIAG is a utility runstream that solves the reduced-order eigenproblem based on a given

set of basis vectors to uncouple a reduced system.

$ ...........................................................

$(TR DIAG) - MAKE AN ARBITRARY VECTOR SET M AND K ORTHONOKMAL

$ ...........................................................

* XQT AUS

OUTLIB=IO: INLIB=IO

DEFINE K=I K: DEFI M=I "MNAME"

DEFINE X = "VLIB" VIBR MODE

IJCODE=IO000

KX=PROD(K,X): SYN K i0000 "NMODE" = XTYS(X,KX)

MX=PROD(M,X): SYN M 10000 "NMODE" = XTYS(X,MX)

{ ZERO=NMODE-I

* JZ (ZERO,IO03)

* XQT STRP

RESET SOURCE=IO, DEST=IO

* JGZ (ZERO,IO04)

* LABEL 1003

* XQT AUS

OUTLIB=IO: INLIB=IO

!K=DS 2 I 1(10 SYN K MASK MASK)

!M=DS 2 1 I(10 SYN M MASK MASK)

!EVAL=K/M

TABLE(NI=I,NJ=I): SYS EVEC: J=l: 1.0

TABLE(NI=I,NJ=I): SYS EVAL: J=l: "EVAL"

* LABEL 1004

* XQT AUS

OUTLIB=IO: INLIB=IO

DEFINE E=SYS EVEC

DEFI X = "VLIB" VIBR MODE

X ORTH I I=CBR(X,E)

DEFINE X=X ORTH i 1

"VLIB" VIBR MODE i 1=UNION(X)

DEFINE E=SYS EVAL

"VLIB" VIBR EVAL i 1=UNION(E)

*END
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